In this paper, we provide the first deterministic algorithm that achieves the tight $1-1/e$ approximation guarantee for submodular maximization under a cardinality (size) constraint while making a number of queries that scales only linearly with the size of the ground set $n$. To complement our result, we also show strong information-theoretic lower bounds. More specifically, we show that when the maximum cardinality allowed for a solution is constant, no algorithm making a sub-linear number of function evaluations can guarantee any constant approximation ratio. Furthermore, when the constraint allows the selection of a constant fraction of the ground set, we show that any algorithm making fewer than $\Omega(n/\log(n))$ function evaluations cannot perform better than an algorithm that simply outputs a uniformly random subset of the ground set of the right size. We then provide a variant of our deterministic algorithm for the more general knapsack constraint, which is the first linear-time algorithm that achieves $1/2$-approximation guarantee for this constraint. Finally, we extend our results to the general case of maximizing a monotone submodular function subject to the intersection of a $p$-set system and multiple knapsack constraints. We extensively evaluate the performance of our algorithms on multiple real-life machine learning applications, including movie recommendation, location summarization, twitter text summarization and video summarization.
翻译:在本文中, 我们提供了第一个确定性算法, 在基点( 大小) 限制下为亚调模式最大化提供紧凑的 1- / 美元近似保证, 而同时提出一些查询, 仅以地面设定的大小为直线缩放 $ 美元。 为了补充我们的结果, 我们还展示了强大的信息理论下限。 更具体地说, 我们显示, 当允许解决方案的最大基点是恒定的时, 没有一个算法, 子线性数量的职能评价可以保证任何恒定的近似比率。 此外, 当限制允许选择固定的地面组部分时, 我们显示, 任何计算法, 使美元( n/\\ log( n) ) 的功能评价少于美元( 美元) 的直线线性能。 任何算法都无法比简单的算法更好, 简单地输出出一个一致的、 任意的地面设定正确大小数的地面组。 然后, 我们为更一般的 kmodel 的 kmodia 运算法, 这是第一个实现1/2 美元 的线性算法保证。 最后, 我们将我们的结果扩大到最大化的单数 和 数级平面级的图像 的图像 的图像 缩数级 。