Lesion images are frequently taken in open-set settings. Because of this, the image data generated is extremely varied in nature.It is difficult for a convolutional neural network to find proper features and generalise well, as a result content based image retrieval (CBIR) system for lesion images are difficult to build. This paper explores this domain and proposes multiple similarity measures which uses Style Loss and Dice Coefficient via a novel similarity measure called I1-Score. Out of the CBIR similarity measures proposed, pure style loss approach achieves a remarkable accuracy increase over traditional approaches like Euclidean Distance and Cosine Similarity. The I1-Scores using style loss performed better than traditional approaches by a small margin, whereas, I1-Scores with dice-coefficient faired very poorly. The model used is trained using ensemble learning for better generalization.
翻译:由于这个原因,产生的图像在性质上差异极大。 进化神经网络很难找到适当的特征和概括性, 由此难以建立基于内容的损害图像检索系统( CBIR ) 。 本文探索了这个领域,并提出了多种相似性衡量标准, 通过一种叫做 I1- Score 的新型相似性测量方法, 使用样式损失和骰子系数的多种相似性测量方法。 在CBIR 提出的类似性测量方法中, 纯样式损失方法比Euclidean Contreal and Cosine 相似性等传统方法的精确度显著提高。 使用样式损失的 I1- Scores 的I1- Score 方法比传统方法差一些, 而使用具有 dice-covalent 公平极差的I1- Score 。 所使用的模型是经过培训的, 使用混合学习来更好地概括化。