Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Recently, many deep hashing methods have been proposed and shown largely improved performance over traditional feature-learning-based methods. Most of these methods examine the pairwise similarity on the semantic-level labels, where the pairwise similarity is generally defined in a hard-assignment way. That is, the pairwise similarity is '1' if they share no less than one class label and '0' if they do not share any. However, such similarity definition cannot reflect the similarity ranking for pairwise images that hold multiple labels. In this paper, a new deep hashing method is proposed for multi-label image retrieval by re-defining the pairwise similarity into an instance similarity, where the instance similarity is quantified into a percentage based on the normalized semantic labels. Based on the instance similarity, a weighted cross-entropy loss and a minimum mean square error loss are tailored for loss-function construction, and are efficiently used for simultaneous feature learning and hash coding. Experiments on three popular datasets demonstrate that, the proposed method outperforms the competing methods and achieves the state-of-the-art performance in multi-label image retrieval.
翻译:在近邻近邻的大规模图像检索中广泛使用了散列编码。 最近, 许多深重的散列方法已经提出, 并显示出与传统的基于地貌学习的方法相比的性能有很大的改进。 这些方法大多在语义级标签上检查对称相似性, 即对称相似性一般以硬分配方式定义。 也就是说, 配对相似性是“ 1 ”, 如果它们共享不少于一个类标签, 如果它们不共享任何等级标签, 则“ 0 ” 。 然而, 这种相似性定义无法反映持有多个标签的对称图像的相似性排序。 在本文中, 提出了一种新的深重度散列方法, 通过重新定义对称相似性来检索多标签图像, 将对称相似性量化成一个实例相似性。 以类似性为基于正统的语义标签的百分率。 根据类似性、 加权跨大西洋损失和最小平均平方差损失都适合损失的构造, 并高效地用于同时进行地段学习并进行编码。 在三种通用的图像检索中, 实验中, 将三种通用的图像转换方法显示: 。