简介: 在许多将数据表示为图形的领域中,学习图形之间的相似性度量标准被认为是一个关键问题,它可以进一步促进各种学习任务,例如分类,聚类和相似性搜索。 最近,人们对深度图相似性学习越来越感兴趣,其中的主要思想是学习一种深度学习模型,该模型将输入图映射到目标空间,以使目标空间中的距离近似于输入空间中的结构距离。 在这里,我们提供对深度图相似性学习的现有文献的全面回顾。 我们为方法和应用提出了系统的分类法。 最后,我们讨论该问题的挑战和未来方向。

在特征空间上学习足够的相似性度量可以显着确定机器学习方法的性能。从数据自动学习此类度量是相似性学习的主要目的。相似度/度量学习是指学习一种功能以测量对象之间的距离或相似度,这是许多机器学习问题(例如分类,聚类,排名等)中的关键步骤。例如,在k最近邻(kNN)中分类[25],需要一个度量来测量数据点之间的距离并识别最近的邻居;在许多聚类算法中,数据点之间的相似性度量用于确定聚类。尽管有一些通用度量标准(例如欧几里得距离)可用于获取表示为矢量的对象之间的相似性度量,但是这些度量标准通常无法捕获正在研究的数据的特定特征,尤其是对于结构化数据。因此,找到或学习一种度量以测量特定任务中涉及的数据点的相似性至关重要。

成为VIP会员查看完整内容
0
77

相关内容

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

多模态表示学习旨在缩小不同模态之间的异质性差距,在利用普遍存在的多模态数据方面起着不可或缺的作用。基于深度学习的多模态表示学习由于具有强大的多层次抽象表示能力,近年来受到了广泛的关注。在本文中,我们提供了一个全面的深度多模态表示学习的综述论文。为了便于讨论如何缩小异质性差距,根据不同模态集成的底层结构,我们将深度多模态表示学习方法分为三种框架:联合表示、协调表示和编解码。此外,我们回顾了该领域的一些典型模型,从传统模型到新开发的技术。本文强调在新开发的技术的关键问题,如encoder-decoder模型,生成对抗的网络,和注意力机制学习的角度来看,多通道表示,我们所知,从来没有审核之前,即使他们已经成为当代研究的主要焦点。对于每个框架或模型,我们将讨论其基本结构、学习目标、应用场景、关键问题、优缺点,以使新研究者和有经验的研究者都能从中受益。最后,提出了今后工作的一些重要方向。

成为VIP会员查看完整内容
0
120

随着web技术的发展,多模态或多视图数据已经成为大数据的主要流,每个模态/视图编码数据对象的单个属性。不同的模态往往是相辅相成的。这就引起了人们对融合多模态特征空间来综合表征数据对象的研究。大多数现有的先进技术集中于如何融合来自多模态空间的能量或信息,以提供比单一模态的同行更优越的性能。最近,深度神经网络展示了一种强大的架构,可以很好地捕捉高维多媒体数据的非线性分布,对多模态数据自然也是如此。大量的实证研究证明了深多模态方法的优势,从本质上深化了多模态深特征空间的融合。在这篇文章中,我们提供了从浅到深空间的多模态数据分析领域的现有状态的实质性概述。在整个调查过程中,我们进一步指出,该领域的关键要素是多模式空间的协作、对抗性竞争和融合。最后,我们就这一领域未来的一些方向分享我们的观点。

成为VIP会员查看完整内容
0
180

近年来,人们对学习图结构数据表示的兴趣大增。基于标记数据的可用性,图表示学习方法一般分为三大类。第一种是网络嵌入(如浅层图嵌入或图自动编码器),它侧重于学习关系结构的无监督表示。第二种是图正则化神经网络,它利用图来增加半监督学习的正则化目标的神经网络损失。第三种是图神经网络,目的是学习具有任意结构的离散拓扑上的可微函数。然而,尽管这些领域很受欢迎,但在统一这三种范式方面的工作却少得惊人。在这里,我们的目标是弥合图神经网络、网络嵌入和图正则化模型之间的差距。我们提出了图结构数据表示学习方法的一个综合分类,旨在统一几个不同的工作主体。具体来说,我们提出了一个图编码解码器模型(GRAPHEDM),它将目前流行的图半监督学习算法(如GraphSage、Graph Convolutional Networks、Graph Attention Networks)和图表示的非监督学习(如DeepWalk、node2vec等)归纳为一个统一的方法。为了说明这种方法的一般性,我们将30多个现有方法放入这个框架中。我们相信,这种统一的观点既为理解这些方法背后的直觉提供了坚实的基础,也使该领域的未来研究成为可能。

概述

学习复杂结构化数据的表示是一项具有挑战性的任务。在过去的十年中,针对特定类型的结构化数据开发了许多成功的模型,包括定义在离散欧几里德域上的数据。例如,序列数据,如文本或视频,可以通过递归神经网络建模,它可以捕捉序列信息,产生高效的表示,如机器翻译和语音识别任务。还有卷积神经网络(convolutional neural networks, CNNs),它根据移位不变性等结构先验参数化神经网络,在图像分类或语音识别等模式识别任务中取得了前所未有的表现。这些主要的成功仅限于具有简单关系结构的特定类型的数据(例如,顺序数据或遵循规则模式的数据)。

在许多设置中,数据几乎不是规则的: 通常会出现复杂的关系结构,从该结构中提取信息是理解对象之间如何交互的关键。图是一种通用的数据结构,它可以表示复杂的关系数据(由节点和边组成),并出现在多个领域,如社交网络、计算化学[41]、生物学[105]、推荐系统[64]、半监督学习[39]等。对于图结构的数据来说,将CNNs泛化为图并非易事,定义具有强结构先验的网络是一项挑战,因为结构可以是任意的,并且可以在不同的图甚至同一图中的不同节点之间发生显著变化。特别是,像卷积这样的操作不能直接应用于不规则的图域。例如,在图像中,每个像素具有相同的邻域结构,允许在图像中的多个位置应用相同的过滤器权重。然而,在图中,我们不能定义节点的顺序,因为每个节点可能具有不同的邻域结构(图1)。此外,欧几里德卷积强烈依赖于几何先验(如移位不变性),这些先验不能推广到非欧几里德域(如平移可能甚至不能在非欧几里德域上定义)。

这些挑战导致了几何深度学习(GDL)研究的发展,旨在将深度学习技术应用于非欧几里德数据。特别是,考虑到图在现实世界应用中的广泛流行,人们对将机器学习方法应用于图结构数据的兴趣激增。其中,图表示学习(GRL)方法旨在学习图结构数据的低维连续向量表示,也称为嵌入。

广义上讲,GRL可以分为两类学习问题,非监督GRL和监督(或半监督)GRL。第一个系列的目标是学习保持输入图结构的低维欧几里德表示。第二系列也学习低维欧几里德表示,但为一个特定的下游预测任务,如节点或图分类。与非监督设置不同,在非监督设置中输入通常是图结构,监督设置中的输入通常由图上定义的不同信号组成,通常称为节点特征。此外,底层的离散图域可以是固定的,这是直推学习设置(例如,预测一个大型社交网络中的用户属性),但也可以在归纳性学习设置中发生变化(例如,预测分子属性,其中每个分子都是一个图)。最后,请注意,虽然大多数有监督和无监督的方法学习欧几里德向量空间中的表示,最近有兴趣的非欧几里德表示学习,其目的是学习非欧几里德嵌入空间,如双曲空间或球面空间。这项工作的主要动机是使用一个连续的嵌入空间,它类似于它试图嵌入的输入数据的底层离散结构(例如,双曲空间是树的连续版本[99])。

鉴于图表示学习领域的发展速度令人印象深刻,我们认为在一个统一的、可理解的框架中总结和描述所有方法是很重要的。本次综述的目的是为图结构数据的表示学习方法提供一个统一的视图,以便更好地理解在深度学习模型中利用图结构的不同方法。

目前已有大量的图表示学习综述。首先,有一些研究覆盖了浅层网络嵌入和自动编码技术,我们参考[18,24,46,51,122]这些方法的详细概述。其次,Bronstein等人的[15]也给出了非欧几里德数据(如图或流形)的深度学习模型的广泛概述。第三,最近的一些研究[8,116,124,126]涵盖了将深度学习应用到图数据的方法,包括图数据神经网络。这些调查大多集中在图形表示学习的一个特定子领域,而没有在每个子领域之间建立联系。

在这项工作中,我们扩展了Hamilton等人提出的编码-解码器框架,并介绍了一个通用的框架,图编码解码器模型(GRAPHEDM),它允许我们将现有的工作分为四大类: (i)浅嵌入方法,(ii)自动编码方法,(iii) 图正则化方法,和(iv) 图神经网络(GNNs)。此外,我们还介绍了一个图卷积框架(GCF),专门用于描述基于卷积的GNN,该框架在广泛的应用中实现了最先进的性能。这使我们能够分析和比较各种GNN,从在Graph Fourier域中操作的方法到将self-attention作为邻域聚合函数的方法[111]。我们希望这种近期工作的统一形式将帮助读者深入了解图的各种学习方法,从而推断出相似性、差异性,并指出潜在的扩展和限制。尽管如此,我们对前几次综述的贡献有三个方面

  • 我们介绍了一个通用的框架,即GRAPHEDM,来描述一系列广泛的有监督和无监督的方法,这些方法对图形结构数据进行操作,即浅层嵌入方法、图形正则化方法、图形自动编码方法和图形神经网络。

  • 我们的综述是第一次尝试从同一角度统一和查看这些不同的工作线,我们提供了一个通用分类(图3)来理解这些方法之间的差异和相似之处。特别是,这种分类封装了30多个现有的GRL方法。在一个全面的分类中描述这些方法,可以让我们了解这些方法究竟有何不同。

  • 我们为GRL发布了一个开源库,其中包括最先进的GRL方法和重要的图形应用程序,包括节点分类和链接预测。我们的实现可以在https://github.com/google/gcnn-survey-paper上找到。

成为VIP会员查看完整内容
0
194

文本数据间语义相似度的估计是自然语言处理领域的一个具有挑战性和开放性的研究课题。由于自然语言的通用性,很难定义基于规则的方法来确定语义相似性度量。为了解决这一问题,多年来人们提出了各种语义相似方法。这篇调查文章追溯了这些方法的发展,根据它们的基本原则将它们分类为基于知识的、基于语料库的、基于深度神经网络的方法和混合方法。通过讨论每种方法的优缺点,本调查提供了现有系统的全面视图,以便新研究人员进行试验和开发创新思想来解决语义相似的问题。

成为VIP会员查看完整内容
0
35

【导读】元学习旨在学会学习,是当下研究热点之一。最近来自爱丁堡大学的学者发布了关于元学习最新综述论文《Meta-Learning in Neural Networks: A Survey》,值得关注,详述了元学习体系,包括定义、方法、应用、挑战,成为不可缺少的文献。

近年来,元学习领域,或者说“学会学习的学习”,引起了人们极大的兴趣。与传统的人工智能方法(使用固定的学习算法从头开始解决给定的任务)不同,元学习的目的是改进学习算法本身,考虑到多次学习的经验。这个范例提供了一个机会来解决深度学习的许多传统挑战,包括数据和计算瓶颈,以及泛化的基本问题。在这项综述中,我们描述了当代元学习的景观。我们首先讨论元学习的定义,并将其定位于相关领域,如迁移学习、多任务学习和超参数优化。然后,我们提出了一个新的分类法,对元学习方法的空间进行了更全面的细分。我们综述了元学习的一些有前途的应用和成功案例,包括小样本学习、强化学习和体系架构搜索。最后,我们讨论了突出的挑战和未来研究的有希望的领域。

https://arxiv.org/abs/2004.05439

概述

现代机器学习模型通常是使用手工设计的固定学习算法,针对特定任务从零开始进行训练。基于深度学习的方法在许多领域都取得了巨大的成功[1,2,3]。但是有明显的局限性[4]。例如,成功主要是在可以收集或模拟大量数据的领域,以及在可以使用大量计算资源的领域。这排除了许多数据本质上是稀有或昂贵的[5],或者计算资源不可用的应用程序[6,7]。

元学习提供了另一种范式,机器学习模型可以在多个学习阶段获得经验——通常覆盖相关任务的分布——并使用这些经验来改进未来的学习性能。这种“学会学习”[8]可以带来各种好处,如数据和计算效率,它更适合人类和动物的学习[9],其中学习策略在一生和进化时间尺度上都得到改善[10,9,11]。机器学习在历史上是建立在手工设计的特征上的模型,而特征的选择往往是最终模型性能的决定因素[12,13,14]。深度学习实现了联合特征和模型学习的承诺[15,16],为许多任务提供了巨大的性能改进[1,3]。神经网络中的元学习可以看作是集成联合特征、模型和算法学习的下一步。神经网络元学习有着悠久的历史[17,18,8]。然而,它作为推动当代深度学习行业前沿的潜力,导致了最近研究的爆炸性增长。特别是,元学习有可能缓解当代深度学习[4]的许多主要批评,例如,通过提供更好的数据效率,利用先验知识转移,以及支持无监督和自主学习。成功的应用领域包括:小样本图像识别[19,20]、无监督学习[21]、数据高效[22,23]、自导向[24]强化学习(RL)、超参数优化[25]和神经结构搜索(NAS)[26, 27, 28]。

在文献中可以找到许多关于元学习的不同观点。特别是由于不同的社区对这个术语的使用略有不同,所以很难定义它。与我们[29]相关的观点认为,元学习是管理“没有免费午餐”定理[30]的工具,并通过搜索最适合给定问题或问题族的算法(归纳偏差)来改进泛化。然而,从广义上来说,这个定义可以包括迁移、多任务、特征选择和模型集成学习,这些在今天通常不被认为是元学习。另一个关于元学习[31]的观点广泛地涵盖了基于数据集特性的算法选择和配置技术,并且很难与自动机器学习(AutoML)[32]区分开来。在这篇论文中,我们关注当代的神经网络元学习。我们将其理解为算法或归纳偏差搜索,但重点是通过端到端学习明确定义的目标函数(如交叉熵损失、准确性或速度)来实现的。

因此,本文提供了一个独特的,及时的,最新的调查神经网络元学习领域的快速增长。相比之下,在这个快速发展的领域,以往的研究已经相当过时,或者关注于数据挖掘[29、33、34、35、36、37、31]、自动[32]的算法选择,或者元学习的特定应用,如小样本学习[38]或神经架构搜索[39]。

我们讨论元学习方法和应用。特别是,我们首先提供了一个高层次的问题形式化,它可以用来理解和定位最近的工作。然后,我们在元表示、元目标和元优化器方面提供了一种新的方法分类。我们调查了几个流行和新兴的应用领域,包括少镜头、强化学习和架构搜索;并对相关的话题如迁移学习、多任务学习和自动学习进行元学习定位。最后,我们讨论了尚未解决的挑战和未来研究的领域。

未来挑战:

-元泛化 元学习在不同任务之间面临着泛化的挑战,这与传统机器学习中在不同实例之间进行泛化的挑战类似。

  • 任务分布的多模态特性
  • 任务族
  • 计算代价
  • 跨模态迁移和异构任务

总结

元学习领域最近出现了快速增长的兴趣。这带来了一定程度的混乱,比如它如何与邻近的字段相关联,它可以应用到什么地方,以及如何对它进行基准测试。在这次综述中,我们试图通过从方法学的角度对这一领域进行彻底的调查来澄清这些问题——我们将其分为元表示、元优化器和元目标的分类;从应用的角度来看。我们希望这项调查将有助于新人和实践者在这个不断增长的领域中定位自己,并强调未来研究的机会。

成为VIP会员查看完整内容
0
174

主题: Deep Learning on Knowledge Graph for Recommender System: A Survey

摘要: 最近的研究表明,知识图谱(KG)在提供有价值的外部知识以改进推荐系统(RS)方面是有效的。知识图谱能够编码连接两个对象和一个或多个相关属性的高阶关系。借助于新兴的GNN,可以从KG中提取对象特征和关系,这是成功推荐的一个重要因素。本文对基于GNN的知识感知深度推荐系统进行了综述。具体来说,我们讨论了最新的框架,重点是它们的核心组件,即图嵌入模块,以及它们如何解决实际的推荐问题,如可伸缩性、冷启动等。我们进一步总结了常用的基准数据集、评估指标以及开源代码。最后,我们对调查结果进行了总结,并提出了这一快速发展领域的潜在研究方向。

成为VIP会员查看完整内容
0
112

论文题目: Deep Learning in Video Multi-Object Tracking: A Survey

论文摘要: 多目标跟踪(MOT)的问题在于遵循序列中不同对象(通常是视频)的轨迹。 近年来,随着深度学习的兴起,提供解决此问题的算法得益于深度模型的表示能力。 本文对采用深度学习模型解决单摄像机视频中的MOT任务的作品进行了全面的调查。 确定了MOT算法的四个主要步骤,并对这些阶段的每个阶段如何使用深度学习进行了深入的回顾。 还提供了对三个MOT数据集上提出的作品的完整实验比较,确定了表现最好的方法之间的许多相似之处,并提出了一些可能的未来研究方向。

成为VIP会员查看完整内容
0
66

题目: Deep Learning in Video Multi-Object Tracking: A Survey

简介: 多对象跟踪(MOT)的问题在于遵循序列中不同对象(通常是视频)的轨迹。 近年来,随着深度学习的兴起,提供解决此问题的算法得益于深度模型的表示能力。 本文对采用深度学习模型解决单摄像机视频中的MOT任务的作品进行了全面的调查。 确定了MOT算法的四个主要步骤,并对这些阶段的每个阶段如何使用深度学习进行了深入的回顾。 还提供了对三个MOTChallenge数据集上提出的作品的完整实验比较,确定了表现最好的方法之间的许多相似之处,并提出了一些可能的未来研究方向。

成为VIP会员查看完整内容
DEEP LEARNING IN VIDEO MULTI-OBJECT TRACKING.pdf
0
34

题目: Understanding Deep Learning Techniques for Image Segmentation

简介: 机器学习已被大量基于深度学习的方法所淹没。各种类型的深度神经网络(例如卷积神经网络,递归网络,对抗网络,自动编码器等)有效地解决了许多具有挑战性的计算机视觉任务,例如在不受限制的环境中对对象进行检测,定位,识别和分割。尽管有很多关于对象检测或识别领域的分析研究,但相对于图像分割技术,出现了许多新的深度学习技术。本文从分析的角度探讨了图像分割的各种深度学习技术。这项工作的主要目的是提供对图像分割领域做出重大贡献的主要技术的直观理解。从一些传统的图像分割方法开始,本文进一步描述了深度学习对图像分割域的影响。此后,大多数主要的分割算法已按照专用于其独特贡献的段落进行了逻辑分类。

成为VIP会员查看完整内容
Understanding Deep Learning Techniques for Image Segmentation.pdf
0
84
小贴士
相关资讯
图数据表示学习综述论文
专知
35+阅读 · 2019年6月10日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
390+阅读 · 2019年4月30日
元学习(Meta-Learning) 综述及五篇顶会论文推荐
网络表示学习综述:一文理解Network Embedding
PaperWeekly
29+阅读 · 2018年8月14日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
10+阅读 · 2018年4月6日
相关论文
Image Segmentation Using Deep Learning: A Survey
Shervin Minaee,Yuri Boykov,Fatih Porikli,Antonio Plaza,Nasser Kehtarnavaz,Demetri Terzopoulos
32+阅读 · 2020年1月15日
Wenwu Zhu,Xin Wang,Peng Cui
19+阅读 · 2020年1月2日
Mamdouh Farouk
6+阅读 · 2019年10月6日
Rama Kumar Pasumarthi,Sebastian Bruch,Xuanhui Wang,Cheng Li,Michael Bendersky,Marc Najork,Jan Pfeifer,Nadav Golbandi,Rohan Anil,Stephan Wolf
4+阅读 · 2019年5月17日
One-Shot Federated Learning
Neel Guha,Ameet Talwalkar,Virginia Smith
7+阅读 · 2019年3月5日
Ziwei Zhang,Peng Cui,Wenwu Zhu
40+阅读 · 2018年12月11日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Learning Graph Embeddings from WordNet-based Similarity Measures
Andrey Kutuzov,Alexander Panchenko,Sarah Kohail,Mohammad Dorgham,Oleksiy Oliynyk,Chris Biemann
3+阅读 · 2018年8月16日
Xuefei Zhe,Shifeng Chen,Hong Yan
6+阅读 · 2018年3月28日
Andrew K. Lampinen,James L. McClelland
5+阅读 · 2017年10月27日
Top