Underlying relationships among Multi-Agent Systems (MAS) in hazardous scenarios can be represented as Game-theoretic models. This paper proposes a new hierarchical network-based model called Game-theoretic Utility Tree (GUT), which decomposes high-level strategies into executable low-level actions for cooperative MAS decisions. It combines with a new payoff measure based on agent needs for real-time strategy games. We present an Explore game domain, where we measure the performance of MAS achieving tasks from the perspective of balancing the success probability and system costs. We evaluate the GUT approach against state-of-the-art methods that greedily rely on rewards of the composite actions. Conclusive results on extensive numerical simulations indicate that GUT can organize more complex relationships among MAS cooperation, helping the group achieve challenging tasks with lower costs and higher winning rates. Furthermore, we demonstrated the applicability of the GUT using the simulator-hardware testbed - Robotarium. The performances verified the effectiveness of the GUT in the real robot application and validated that the GUT could effectively organize MAS cooperation strategies, helping the group with fewer advantages achieve higher performance.


翻译:在危险场景中,多智能体系统 (MAS) 之间的潜在关系可以用游戏理论模型表示。本文提出了一种新的基于网络的层次化模型,称为游戏理论效用树 (GUT),它将高层策略分解为可执行的低层动作,以实现协作 MAS 的决策。它与基于智能体需求的新报酬度量相结合,用于实时战略游戏。我们提出了一个探索游戏环境,从成功概率和系统代价的角度衡量了 MAS 完成任务的表现。我们将 GUT 方法与贪婪依赖复合行动的最先进方法进行评估。广泛的数值模拟结果显示,GUT 可以组织更复杂的 MAS 协作关系,以更低的成本和更高的胜率帮助群体完成具有挑战性的任务。此外,我们还通过仿真器-硬件测试平台 Robotarium,证明了 GUT 的适用性。性能验证了 GUT 在实际机器人应用中的有效性,验证了 GUT 能够有效地组织 MAS 协作策略,帮助较弱的群体获得更高的性能。

0
下载
关闭预览

相关内容

游戏理论由心理学家威廉·斯蒂芬森提出的一套新异的媒介观。斯蒂芬森集中探讨了传播的游戏性质。他先将人类的所有行为分成工作与游戏两种。他说:“工作是对付现实,是谋生,是有产品的。相反,游戏基本上是没有产品的除非是提供自我满足。” 与此相应,他又分出两种传播:一种是工作性传播,比如下达命令;另一种是游戏性传播,比如相聚闲聊。
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
80+阅读 · 2022年7月16日
Arxiv
58+阅读 · 2021年11月15日
VIP会员
相关VIP内容
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员