This work presents a high-accuracy, mesh-free, generalized Stokes theorem-based numerical quadrature scheme for integrating functions over trimmed parametric surfaces and volumes. The algorithm relies on two fundamental steps: (1) We iteratively reduce the dimensionality of integration using the generalized Stokes theorem to line integrals over trimming curves, and (2) we employ numerical antidifferentiation in the generalized Stokes theorem using high-order quadrature rules. The scheme achieves exponential convergence up to trimming curve approximation error and has applications to computation of geometric moments, immersogeometric analysis, conservative field transfer between high-order curvilinear meshes, and initialization of multi-material simulations. We compare the quadrature scheme to commonly-used quadrature schemes in the literature and show that our scheme is much more efficient in terms of number of quadrature points used. We provide an open-source implementation of the scheme in MATLAB as part of QuaHOG, a software package for Quadrature of High-Order Geometries.
翻译:这项工作提出了一种高精度、无网状、通用的Stokes理论理论模型,用于在三角参数表面和体积上整合各种功能。算法依赖于两个基本步骤:(1) 我们利用通用Stokes理论反复减少集成的维度,以三线曲线为主线,(2) 我们使用高阶二次曲线规则,在通用Stokes理论模型中采用数字反差异法。该计划实现了指数趋同,达到三角曲线近似误差,并应用了几何时间的计算、即地表测量分析、高阶曲线模和多物质模拟的初始化之间的保守实地转移。我们将四面图与文献中常用的二次曲线图案比较,并表明我们的方法在使用的二次曲线点数方面效率要高得多。我们提供了MATLAB计划作为QuaHOG的一部分的开放源实施。