Bayesian Optimization Mixed-Precision Neural Architecture Search (BOMP-NAS) is an approach to quantization-aware neural architecture search (QA-NAS) that leverages both Bayesian optimization (BO) and mixed-precision quantization (MP) to efficiently search for compact, high performance deep neural networks. The results show that integrating quantization-aware fine-tuning (QAFT) into the NAS loop is a necessary step to find networks that perform well under low-precision quantization: integrating it allows a model size reduction of nearly 50\% on the CIFAR-10 dataset. BOMP-NAS is able to find neural networks that achieve state of the art performance at much lower design costs. This study shows that BOMP-NAS can find these neural networks at a 6x shorter search time compared to the closest related work.


翻译:Bayesian 优化优化混合精密神经结构搜索(BOMP-NAS)是一种量化智能神经结构搜索(QA-NAS)方法,它利用Bayesian优化(BO)和混合精密度量化(MP)来高效搜索紧凑高性能深神经网络。结果显示,将量化识微调(QAFT)纳入NAS环路是发现在低精度量化下运行良好的网络的一个必要步骤:整合它可以使CIFAR-10数据集的模型规模减少近50 ⁇ 。BOMP-NAS能够找到在设计成本低得多的情况下实现艺术状态的神经网络。这项研究显示,与最接近的相关工作相比,BOMP-NAS可以在6x较短的搜索时间找到这些神经网络。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月19日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员