In this paper, we propose to regularize ill-posed inverse problems using a deep hierarchical variational autoencoder (HVAE) as an image prior. The proposed method synthesizes the advantages of i) denoiser-based Plug \& Play approaches and ii) generative model based approaches to inverse problems. First, we exploit VAE properties to design an efficient algorithm that benefits from convergence guarantees of Plug-and-Play (PnP) methods. Second, our approach is not restricted to specialized datasets and the proposed PnP-HVAE model is able to solve image restoration problems on natural images of any size. Our experiments show that the proposed PnP-HVAE method is competitive with both SOTA denoiser-based PnP approaches, and other SOTA restoration methods based on generative models.
翻译:在本文中,我们提出使用深度分层变分自编码器(HVAE)作为图像先验正则化不适定逆问题。所提出的方法综合了i)基于降噪器的插入式&;play方法和ii)解决逆问题的生成模型方法的优点。首先,我们利用VAE属性设计了一个高效的算法,从PnP方法的收敛保证中获益。其次,我们的方法不限于专门的数据集,所提出的PnP-HVAE模型能够在任何尺寸的自然图像上解决图像恢复问题。我们的实验表明,所提出的PnP-HVAE方法与SOTA基于降噪器的PnP方法以及其他基于生成模型的SOTA恢复方法竞争力强。