We study the problem of sampling from a target distribution in $\mathbb{R}^d$ whose potential is not smooth. Compared with the sampling problem with smooth potentials, this problem is much less well-understood due to the lack of smoothness. In this paper, we propose a novel sampling algorithm for a class of non-smooth potentials by first approximating them by smooth potentials using a technique that is akin to Nesterov smoothing. We then utilize sampling algorithms on the smooth potentials to generate approximate samples from the original non-smooth potentials. With a properly chosen smoothing intensity, the accuracy of the algorithm is guaranteed. Hence we obtain non-asymptotic convergence results based on existing analysis of smooth sampling. We verify our convergence result on a synthetic example and apply our method to improve the worst-case performance of Bayesian inference on a real-world example.
翻译:我们从潜力不光滑的目标分布中研究取样问题。 与具有光滑潜力的取样问题相比, 由于缺乏光滑, 这个问题远不如人们所理解。 在本文中, 我们提出一种新的非吸附潜力类型抽样算法, 首先使用与Nesterov相似的光滑技术, 以光滑潜力来接近这些潜力。 然后我们利用光滑潜力的取样算法从原始的非吸附潜力中产生大约的样本。 通过适当选择的平滑强度, 算法的准确性得到保证。 因此, 我们根据对光滑采样的现有分析, 获得了非抽附的趋同结果。 我们根据合成范例来核查我们的趋同结果, 并运用我们的方法来改善贝耶斯人在现实世界中最坏的推断性能。</s>