Gaussian graphical models typically assume a homogeneous structure across all subjects, which is often restrictive in applications. In this article, we propose a weighted pseudo-likelihood approach for graphical modeling which allows different subjects to have different graphical structures depending on extraneous covariates. The pseudo-likelihood approach replaces the joint distribution by a product of the conditional distributions of each variable. We cast the conditional distribution as a heteroscedastic regression problem, with covariate-dependent variance terms, to enable information borrowing directly from the data instead of a hierarchical framework. This allows independent graphical modeling for each subject, while retaining the benefits of a hierarchical Bayes model and being computationally tractable. An efficient embarrassingly parallel variational algorithm is developed to approximate the posterior and obtain estimates of the graphs. Using a fractional variational framework, we derive asymptotic risk bounds for the estimate in terms of a novel variant of the $\alpha$-R\'{e}nyi divergence. We theoretically demonstrate the advantages of information borrowing across covariates over independent modeling. We show the practical advantages of the approach through simulation studies and illustrate the dependence structure in protein expression levels on breast cancer patients using CNV information as covariates.
翻译:Gausian 图形模型通常假定所有科目的均匀结构, 通常在应用上都有限制性。 在本条中, 我们提出一个图形模型的加权假象方法, 使不同的对象能够根据异异共异性而拥有不同的图形结构。 假相似性方法取代了每个变量有条件分布的产物的联合分布。 我们将条件分布作为一个偏差回归问题, 并带有因变量而异的差异条件, 以便能够直接从数据中取取信息, 而不是从等级框架中取出信息。 这样可以为每个主题建立独立的图形模型, 同时保留分级贝斯模型的效益, 并且可以进行计算。 一种高效的尴尬平行变异算法正在开发, 以近似离子和获取图形的估计数。 我们使用一个分数变式框架, 将条件分布风险归为一种基于 $\ alpha$- R\\\\\\\\\ e}nyi 差异的新变量的估算值。 我们从理论上展示了信息在独立模型中跨异性病人之间借用信息的优势, 同时保留了等级模型的优势, 我们通过模拟研究展示了该方法的实际优势, 并展示了Cveilvarialestalexalatesalates dealates dealationsessations degradududustrationsmalsmalsalsmalsmalsmalsals。</s>