We consider the problem of deciding how best to target and prioritize existing vaccines that may offer protection against new variants of an infectious disease. Sequential experiments are a promising approach; however, challenges due to delayed feedback and the overall ebb and flow of disease prevalence make available method inapplicable for this task. We present a method, partial likelihood Thompson sampling, that can handle these challenges. Our method involves running Thompson sampling with belief updates determined by partial likelihood each time we observe an event. To test our approach, we ran a semi-synthetic experiment based on 200 days of COVID-19 infection data in the US.
翻译:我们考虑了如何最好地确定现有疫苗的针对性和优先顺序的问题,这些疫苗可以提供保护,防止传染病的新的变种。按顺序进行实验是一种很有希望的方法;然而,由于反馈延迟以及疾病流行的总体程度和流动而带来的挑战,使这项工作无法采用这种方法。我们提出了一个方法,即部分有可能采样Thompson,可以应对这些挑战。我们的方法是进行Thompson采样,每次观察一次事件时都以部分可能性来确定最新的信仰。为了测试我们的方法,我们在美国进行了基于200天COVID-19感染数据的半合成实验。