Molecular dynamics (MD) has long been the \emph{de facto} choice for modeling complex atomistic systems from first principles, and recently deep learning become a popular way to accelerate it. Notwithstanding, preceding approaches depend on intermediate variables such as the potential energy or force fields to update atomic positions, which requires additional computations to perform back-propagation. To waive this requirement, we propose a novel model called ScoreMD by directly estimating the gradient of the log density of molecular conformations. Moreover, we analyze that diffusion processes highly accord with the principle of enhanced sampling in MD simulations, and is therefore a perfect match to our sequential conformation generation task. That is, ScoreMD perturbs the molecular structure with a conditional noise depending on atomic accelerations and employs conformations at previous timeframes as the prior distribution for sampling. Another challenge of modeling such a conformation generation process is that the molecule is kinetic instead of static, which no prior studies strictly consider. To solve this challenge, we introduce a equivariant geometric Transformer as a score function in the diffusion process to calculate the corresponding gradient. It incorporates the directions and velocities of atomic motions via 3D spherical Fourier-Bessel representations. With multiple architectural improvements, we outperforms state-of-the-art baselines on MD17 and isomers of C7O2H10. This research provides new insights into the acceleration of new material and drug discovery.
翻译:长期以来,分子动态(MD)一直是从最初的原则出发对复杂的原子系统进行建模的模型,最近深层次的学习成为加速这种系统的一种流行方法。尽管前一种方法取决于中间变量,例如潜在的能量或更新原子位置的强制场,这需要额外的计算来进行反向调整。为了放弃这一要求,我们提议了一个叫ConcordMD的新模型,直接估计分子相容的圆密度梯度,从而直接估计分子相容的细度。此外,我们分析扩散过程与在MD模拟中强化取样的原则高度一致,因此与我们相继的相容生成任务完全吻合。这就是,SconMD perMD 渗透分子结构结构结构结构结构,根据原子加速速度和先前的分布,采用有条件的噪音来更新原子位置。模型生成过程的另一个挑战是分子是动的,而不是静态的,而先前的研究没有对此进行严格考虑。为了解决这一挑战,我们引入了一种等同的地球测量变变变变变的变的变的变的变的变的变的变的模型,作为在传播过程中计算相应梯度的加速度,从而计算出相应的渐变异的顺序。它把这种方向和新结构的变形的变形的变形的化学变形结构模型的图式的图式,它化模型的模型的模型的模型的图式的图式的图式的图式,它提供了我们在了我们制的模型的模型的模型的模型的模型的模型的模型。