We consider spatial voting where candidates are located in the Euclidean $d$-dimensional space and each voter ranks candidates based on their distance from the voter's ideal point. We explore the case where information about the location of voters' ideal points is incomplete: for each dimension, we are given an interval of possible values. We study the computational complexity of computing the possible and necessary winners for positional scoring rules. Our results show that we retain tractable cases of the classic model where voters have partial-order preferences. Moreover, we show that there are positional scoring rules under which the possible-winner problem is intractable for partial orders, but tractable in the one-dimension spatial setting (while intractable in higher fixed number of dimensions).
翻译:我们考虑的是候选人在欧几里德元维度空间中的空间投票,以及每个选民根据与选民理想点的距离排列候选人的位置。我们探讨的是选民理想点位置的信息不完整的情况:每个层面,我们都有可能的数值间隔。我们研究了计算职位评分规则的可能和必要赢家的计算复杂性。我们的结果表明,我们保留了选民偏好部分顺序的典型模式的可移动案例。此外,我们显示了一些位置评分规则,根据这些规则,可能的赢家问题难以解决部分顺序问题,但在单一空间环境中(虽然在固定的层面上比较难以解决),但可以在单一空间环境中解决。