It has been extensively studied in the literature that solving Maxwell equations is very sensitive to the mesh structure, space conformity and solution regularity. Roughly speaking, for almost all the methods in the literature, optimal convergence for low-regularity solutions heavily relies on conforming spaces and highly-regular simplicial meshes. This can be a significant limitation for many popular methods based on polytopal meshes in the case of inhomogeneous media, as the discontinuity of electromagnetic parameters can lead to quite low regularity of solutions near media interfaces, and potentially worsened by geometric singularities, making many popular methods based on broken spaces, non-conforming or polytopal meshes particularly challenging to apply. In this article, we present a virtual element method for solving an indefinite time-harmonic Maxwell equation in 2D inhomogeneous media with quite arbitrary polytopal meshes, and the media interface is allowed to have geometric singularity to cause low regularity. There are two key novelties: (i) the proposed method is theoretically guaranteed to achieve robust optimal convergence for solutions with merely $\mathbf{H}^{\theta}$ regularity, $\theta\in(1/2,1]$; (ii) the polytopal element shape can be highly anisotropic and shrinking, and an explicit formula is established to describe the relationship between the shape regularity and solution regularity. Extensive numerical experiments will be given to demonstrate the effectiveness of the proposed method.


翻译:已经广泛研究发现,求解麦克斯韦方程对于网格结构、空间一致性和解的正则性非常敏感。总的来说,对于几乎所有文献中的方法来说,低正则性解的最优收敛性很大程度上依赖于相应的空间的一致性和高正则的单纯形网格。对于不均匀介质的情况,这可能限制许多基于多面体网格的流行方法,因为电磁参数的不连续可能导致介质接口附近的解具有相当低的正则性,由于几何奇异性而变得更糟,使得许多流行的基于破碎空间、非一致或多面体网格的方法特别具有挑战性。在本文中,我们提出了一种虚拟元素方法,用于求解不均匀介质中的二维定向时间谐波麦克斯韦方程,该方法允许使用任意多边形网格,介质界面可以具有几何奇异性以导致低正则性。本文有两个关键创新点: (i) 所提出的方法在理论上保证实现 $\mathbf{H}^{\theta}$ 正则性 $\theta\in(1/2,1]$ 的解的稳健优化收敛性;(ii) 多面体元素形状可以高度各向异性和收缩,建立了一种显式公式来描述形状正则性和解正则性之间的关系。将给出大量的数值实验来证明所提出的方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月4日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月4日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员