Bayesian nonparametric hierarchical priors provide flexible models for sharing of information within and across groups. We focus on latent feature allocation models, where the data structures correspond to multisets or unbounded sparse matrices. The fundamental development in this regard is the Hierarchical Indian Buffet process (HIBP), devised by Thibaux and Jordan (2007). However, little is known in terms of explicit tractable descriptions of the joint, marginal, posterior and predictive distributions of the HIBP. We provide explicit novel descriptions of these quantities, in the Bernoulli HIBP and general spike and slab HIBP settings, which allows for exact sampling and simpler practical implementation. We then extend these results to the more complex setting of hierarchies of general HIBP (HHIBP). The generality of our framework allows one to recognize important structure that may otherwise be masked in the Bernoulli setting, and involves characterizations via dynamic mixed Poisson random count matrices. Our analysis shows that the standard choice of hierarchical Beta processes for modeling across group sharing is not ideal in the classic Bernoulli HIBP setting proposed by Thibaux and Jordan (2007), or other spike and slab HIBP settings, and we thus indicate tractable alternative priors.
翻译:贝叶斯非参数分层先验提供了共享信息在组内和组间的灵活模型。我们专注于潜在特征分配模型,其中数据结构对应于多重集或无限稀疏矩阵。这方面的基本发展是由Thibaux和Jordan(2007)设想的分层印度自助餐过程(HIBP)。但是,关于HIBP的联合、边缘、后验和预测分布的明确可追踪描述很少为人所知, 我们提供了这些量的明确且新颖的描述,在伯努利HIBP和一般HIBP设置下,这允许精确采样和更简单的实际实现。然后,我们将这些结果扩展到更复杂的层次结构的一般HIBP(HHIBP)设置。我们框架的广泛性使得人们能够认识到在伯努利设置中可能被掩盖的重要结构, 并且涉及通过动态混合泊松随机计数矩阵进行的表征。我们的分析表明,在Thibaux和Jordan(2007)提出的经典伯努利HIBP设置或其他HIBP设置中,用于跨组共享建模的标准层次贝塔过程并不理想,因此我们指示可追踪的替代先验。