Proximal causal inference is a recently proposed framework for evaluating the causal effect of a treatment on an outcome variable in the presence of unmeasured confounding (Miao et al., 2018a; Tchetgen Tchetgen et al., 2020). For nonparametric point identification, the framework leverages proxy variables of unobserved confounders, provided that such proxies are sufficiently relevant for the latter, a requirement that has previously been formalized as a completeness condition. Completeness is key to connecting the observed proxy data to hidden factors via a so-called confounding bridge function, identification of which is an important step towards proxy-based point identification of causal effects. However, completeness is well-known not to be empirically testable, therefore potentially restricting the application of the proximal causal framework. In this paper, we propose partial identification methods that do not require completeness and obviate the need for identification of a bridge function. That is, we establish that proxies of unobserved confounders can be leveraged to obtain bounds on the causal effect of the treatment on the outcome even if available information does not suffice to identify either a bridge function or a corresponding causal effect of interest. We further establish analogous partial identification results in related settings where identification hinges upon hidden mediators for which proxies are available, however such proxies are not sufficiently rich for point identification of a bridge function or a corresponding causal effect of interest.


翻译:近距离因果推断是一种最近提出用于在存在未观测混淆因素的情况下评估治疗对结果变量的因果效应的框架(Miao et al., 2018a;Tchetgen Tchetgen et al., 2020)。对于非参数点识别,框架利用未观察到的混淆因素的代理变量,前提是这样的代理变量足够相关于后者,该要求先前已被形式化为完备性条件。完整性对于通过所谓的混淆桥函数将观察到的代理数据与隐藏因素相连接,这是代理的点识别因果效应的重要一步。然而,众所周知,完备性不是经验检验的,因此可能限制使用近距离因果框架。在本文中,我们提出部分识别方法,不需要完整性,并且无需识别桥接函数。也就是说,我们建立了这样一种方法,即可以利用未观察到的混淆因素的代理来获得关于治疗对结果的因果效应的界限,即使所提供的信息不足以识别缺陷函数或者所需识别的感兴趣的因果效应。我们进一步在相关的设置中建立了类似的部分识别结果,其中识别依赖于可用的代理中介变量,但这样的代理对于桥函数或感兴趣的因果效应的点识别不足够丰富。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
近期必读的六篇 NeurIPS 2020【因果推理】相关论文和代码
专知会员服务
71+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
WWW2022 | 基于因果的推荐算法教程
机器学习与推荐算法
3+阅读 · 2022年5月26日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员