Many modern algorithms for inverse problems and data assimilation rely on ensemble Kalman updates to blend prior predictions with observed data. Ensemble Kalman methods often perform well with a small ensemble size, which is essential in applications where generating each particle is costly. This paper develops a non-asymptotic analysis of ensemble Kalman updates that rigorously explains why a small ensemble size suffices if the prior covariance has moderate effective dimension due to fast spectrum decay or approximate sparsity. We present our theory in a unified framework, comparing several implementations of ensemble Kalman updates that use perturbed observations, square root filtering, and localization. As part of our analysis, we develop new dimension-free covariance estimation bounds for approximately sparse matrices that may be of independent interest.
翻译:许多反向问题和数据同化的现代算法都依靠共同点卡尔曼的更新,将先前的预测与观察到的数据混为一谈。共点卡尔曼方法通常使用小的共点大小运作良好,这对于产生每个粒子的应用程序来说至关重要。本文对共点卡尔曼更新进行非单一分析,严谨解释为什么如果先前的共点因频谱快速衰减或近似聚度而具有中等有效维度,那么小共点大小就足够了。我们在一个统一的框架内提出我们的理论,比较了使用透视观测、平根过滤和本地化的共点更新的几种共同点。作为我们分析的一部分,我们为可能具有独立兴趣的大约稀少的矩阵制定了新的无维度共差估计。