In predictive modeling with simulation or machine learning, it is critical to assess the quality of estimated values through output analysis accurately. In recent decades output analysis has become enriched with methods that quantify the impact of input data uncertainty in the model outputs to increase robustness. However, most developments apply when the input data can be parametrically parameterized. We propose a unified output analysis framework for simulation and machine learning outputs through the lens of Monte Carlo sampling. This framework provides nonparametric quantification of the variance and bias induced in the outputs with higher-order accuracy. Our new bias-corrected estimation from the model outputs leverages the extension of fast iterative bootstrap sampling and higher-order influence functions. For the scalability of the proposed estimation methods, we devise budget-optimal rules and leverage control variates for variance reduction. Our numerical results demonstrate a clear advantage in building better and more robust confidence intervals for both simulation and machine learning frameworks.
翻译:在模拟或机器学习的预测模型中,通过产出分析准确评估估计值的质量至关重要。近几十年来,产出分析已经通过量化模型产出中输入数据不确定性的影响的方法丰富了。然而,大多数发展动态都适用于输入数据可参数化的情况。我们提议了一个统一的产出分析框架,以模拟和机器学习产出通过蒙特卡洛抽样镜片进行。这个框架对产出中出现的差异和偏差进行了非参数性量化,并具有更高的准确度。我们从模型产出中得出的新的偏差修正估计利用了快速迭接靴取样和较高级影响功能的扩展。为了扩大拟议的估算方法的可扩展性,我们设计了预算最佳的规则,并利用控制变量来减少差异。我们的数字结果表明,在为模拟和机器学习框架建立更好、更可靠的信任间隔方面有明显的优势。