In the process of reproducing the state dynamics of parameter dependent distributed systems, data from physical measurements can be incorporated into the mathematical model to reduce the parameter uncertainty and, consequently, improve the state prediction. Such a Data Assimilation process must deal with the data and model misfit arising from experimental noise as well as model inaccuracies and uncertainties. In this work, we focus on the ensemble Kalman method (EnKM), a particle-based iterative regularization method designed for \textit{a posteriori} analysis of time series. The method is gradient free and, like the ensemble Kalman filter (EnKF), relies on a sample of parameters or particle ensemble to identify the state that better reproduces the physical observations, while preserving the physics of the system as described by the best knowledge model. We consider systems described by parameterized parabolic partial differential equations and employ model order reduction (MOR) techniques to generate surrogate models of different accuracy with uncertain parameters. Their use in combination with the EnKM involves the introduction of the model bias which constitutes a new source of systematic error. To mitigate its impact, an algorithm adjustment is proposed accounting for a prior estimation of the bias in the data. The resulting RB-EnKM is tested in different conditions, including different ensemble sizes and increasing levels of experimental noise. The results are compared to those obtained with the standard EnKF and with the unadjusted algorithm.
翻译:在复制依赖分布的参数分布系统的状态动态的过程中,物理测量数据可以纳入数学模型,以减少参数不确定性,从而改进国家预测。这种数据同化过程必须处理实验噪音以及模型不准确性和不确定性产生的数据和模型不适应以及模型不准确性和模型造成的数据和模型错误。在这项工作中,我们着重研究由实验噪音以及模型不准确性和不确定性和不确定性模型描述的系统物理学系统。在这项工作中,我们着重研究由实验性噪音以及最佳知识模型描述的系统物理物理不准确性和不确定性模型描述的系统,这是为对时间序列序列进行\ textit{a posorioror 分析而设计的基于粒子的迭代性规范方法。这种方法是免费的,并且像通感卡曼过滤器(ENKF)过滤器一样,依靠参数或粒粒子共元素的样本样本样本,以确定更好地复制物理观测的物理观测结果,同时保存最佳知识模型的物理模型不准确度的物理不准确度;我们考虑由参数和不确定参数产生不同精确的超度模型模型模型模型(M)的转换方法。它们与 EnKM 结合使用的方法是引入模型偏见的引入模型,这构成了新的系统错误来源。为了减少对RB(K) 将K) 后,在前的货币分析中,包括正在不断的机级评估的机级评估的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级、后算的机级的机算、将调整,包括了一种调整的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的演的会计的会计的会计的会计的会计的会计的会计的会计的会计的会计的会计,包括前的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的调整的调整的调整的