I construct and justify confidence intervals for longitudinal causal parameters estimated with machine learning. Longitudinal parameters include long term, dynamic, and mediated effects. I provide a nonasymptotic theorem for any longitudinal causal parameter in a general class, estimated with any machine learning algorithm that satisfies a few simple conditions. The main result encompasses local parameters defined for specific demographics as well as proximal parameters defined in the presence of unobserved confounding. I prove consistency, Gaussian approximation, and semiparametric efficiency. The rate of Gaussian approximation is $n^{-1/2}$ for global parameters, and it degrades gracefully for local parameters. I articulate a simple set of conditions to translate mean square rates into statistical inference, and verify that they hold for adversarial estimators over generic function spaces. A key feature of the main result is a new multiple robustness to ill posedness for proximal causal inference in longitudinal settings. Of independent interest, I provide what appears to be the first mean square rate for nested nonparametric instrumental variable regression.
翻译:我为通过机器学习估计的纵向因果参数构建并解释信任度间隔。 纵向参数包括长期、 动态和介质效应。 我为普通类中的任何纵向因果参数提供一个不设防的理论, 使用符合少数简单条件的机器学习算法进行估算。 主要结果包括为特定人口定义的当地参数, 以及在未观察到的混杂情况下界定的准参数。 我证明了一致性、 高斯近似值和半对称效率。 Gaussian 近似率对于全球参数来说是$n ⁇ -1/2}, 并且它优于本地参数。 我为将平方平方平均率转换为统计推论, 并核实它们对于通用功能空间的对抗性估计值持有的简单条件集成一组。 主要结果的一个关键特征是, 在长期环境中的准氧化因果推断中, 具有新的多维度, 其不构成错误。 出于独立的兴趣, 我为嵌套式的非对称工具变量回归提供了第一种平均正方速率。