I construct and justify confidence intervals for longitudinal causal parameters estimated with machine learning. Longitudinal parameters include long term, dynamic, and mediated effects. I provide a nonasymptotic theorem for any longitudinal causal parameter in a general class, estimated with any machine learning algorithm that satisfies a few simple conditions. The main result encompasses local parameters defined for specific demographics as well as proximal parameters defined in the presence of unobserved confounding. I prove consistency, Gaussian approximation, and semiparametric efficiency. The rate of Gaussian approximation is $n^{-1/2}$ for global parameters, and it degrades gracefully for local parameters. I articulate a simple set of conditions to translate mean square rates into statistical inference, and verify that they hold for adversarial estimators over generic function spaces. A key feature of the main result is a new multiple robustness to ill posedness for proximal causal inference in longitudinal settings. Of independent interest, I provide what appears to be the first mean square rate for nested nonparametric instrumental variable regression.


翻译:我为通过机器学习估计的纵向因果参数构建并解释信任度间隔。 纵向参数包括长期、 动态和介质效应。 我为普通类中的任何纵向因果参数提供一个不设防的理论, 使用符合少数简单条件的机器学习算法进行估算。 主要结果包括为特定人口定义的当地参数, 以及在未观察到的混杂情况下界定的准参数。 我证明了一致性、 高斯近似值和半对称效率。 Gaussian 近似率对于全球参数来说是$n ⁇ -1/2}, 并且它优于本地参数。 我为将平方平方平均率转换为统计推论, 并核实它们对于通用功能空间的对抗性估计值持有的简单条件集成一组。 主要结果的一个关键特征是, 在长期环境中的准氧化因果推断中, 具有新的多维度, 其不构成错误。 出于独立的兴趣, 我为嵌套式的非对称工具变量回归提供了第一种平均正方速率。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月8日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员