The Multi-Task Learning (MTL) technique has been widely studied by word-wide researchers. The majority of current MTL studies adopt the hard parameter sharing structure, where hard layers tend to learn general representations over all tasks and specific layers are prone to learn specific representations for each task. Since the specific layers directly follow the hard layers, the MTL model needs to estimate this direct change (from general to specific) as well. To alleviate this problem, we introduce the novel cluster layer, which groups tasks into clusters during training procedures. In a cluster layer, the tasks in the same cluster are further required to share the same network. By this way, the cluster layer produces the general presentation for the same cluster, while produces relatively specific presentations for different clusters. As transitions the cluster layers are used between the hard layers and the specific layers. The MTL model thus learns general representations to specific representations gradually. We evaluate our model with MTL document classification and the results demonstrate the cluster layer is quite efficient in MTL.


翻译:多任务学习技术(MTL)已经由全字研究人员广泛研究,目前的大多数MTL研究采用硬参数共享结构,硬层次往往学习所有任务的一般表述,具体层次容易学习每项任务的具体表述。由于具体层次直接遵循硬层次,MTL模式需要估计这种直接变化(从一般到具体),为了缓解这一问题,我们引入了新颖的集群层,在培训程序期间将任务分组。在一个集群层,同一集群组的任务还需要共享同一网络。这样,集群层为同一集群编制一般表述,同时为不同的集群编制比较具体的表述。随着集群层在硬层次和具体层次之间过渡,集群层在硬层次和具体层次之间被使用。因此,MTL模型需要逐渐了解具体表述的一般表述。我们用MTL文件分类来评估我们的模型,结果显示分组在MTL中的效率很高。

0
下载
关闭预览

相关内容

注意力图神经网络的小样本学习
专知会员服务
191+阅读 · 2020年7月16日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
Representation Learning on Network 网络表示学习笔记
全球人工智能
5+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月16日
Arxiv
0+阅读 · 2021年3月13日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
9+阅读 · 2019年4月19日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
Representation Learning on Network 网络表示学习笔记
全球人工智能
5+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年3月16日
Arxiv
0+阅读 · 2021年3月13日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
9+阅读 · 2019年4月19日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员