论文题目: Initialization for Network Embedding: A Graph Partition Approach
论文摘要: 网络嵌入已经在文献中得到了深入的研究,并广泛用于各种应用中,如链接预测和节点分类。尽管先前的工作集中在新算法的设计上或针对各种问题设置进行了量身定制,但常常忽略了学习过程中对初始化策略的讨论。在这项工作中,我们解决了这个重要的网络嵌入初始化问题,它可以显著地提高算法的有效性和效率。具体来说,我们首先利用graph partition技术将图划分为几个不相交的子集,然后基于这些partition构造一个abstract graph。我们通过计算abstract graph上的网络嵌入,得到图中每个节点的嵌入初始化,abstract graph上的网络嵌入比输入图小得多,然后将嵌入传播到输入图的节点中。通过对各种数据集的大量实验,我们证明了我们的初始化技术显著提高了最先进算法在链接预测和节点分类方面的性能,分别提高了7.76%和8.74%。此外,我们证明了初始化技术至少减少了20%的运行时间。
作者简介: Wenqing Lin,腾讯高级研究员,新加坡南洋理工大学计算机科学系博士。