Representation Learning on Network 网络表示学习笔记

2017 年 9 月 30 日 全球人工智能

“全球人工智能”拥有十多万AI产业用户,10000多名AI技术专家。主要来自:北大,清华,中科院,麻省理工,卡内基梅隆,斯坦福,哈佛,牛津,剑桥...以及谷歌,腾讯,百度,脸谱,微软,阿里,海康威视,英伟达......等全球名校和名企。欢迎入驻《全球人工智能学院》!


——免费加入AI高管投资者群>>

——免费加入AI技术专家社群>>

作者:范深

网络表示学习(Representation Learning on Network),一般说的就是向量化(Embedding)技术,简单来说,就是将网络中的结构(节点、边或者子图),通过一系列过程,变成一个多维向量,通过这样一层转化,能够将复杂的网络信息变成结构化的多维特征,从而利用机器学习方法实现更方便的算法应用。


Embedding Nodes

在这些方法中,受研究和应用关注最多的就是节点向量化(Node Embedding),即对于一个图