Self-supervised contrastive learning frameworks have progressed rapidly over the last few years. In this paper, we propose a novel mutual information optimization-based loss function for contrastive learning. We model our pre-training task as a binary classification problem to induce an implicit contrastive effect and predict whether a pair is positive or negative. We further improve the n\"aive loss function using the Majorize-Minimizer principle and such improvement helps us to track the problem mathematically. Unlike the existing methods, the proposed loss function optimizes the mutual information in both positive and negative pairs. We also present a closed-form expression for the parameter gradient flow and compare the behavior of the proposed loss function using its Hessian eigen-spectrum to analytically study the convergence of SSL frameworks. The proposed method outperforms the SOTA contrastive self-supervised frameworks on benchmark datasets like CIFAR-10, CIFAR-100, STL-10, and Tiny-ImageNet. After 200 epochs of pre-training with ResNet-18 as the backbone, the proposed model achieves an accuracy of 86.2\%, 58.18\%, 77.49\%, and 30.87\% on CIFAR-10, CIFAR-100, STL-10, and Tiny-ImageNet datasets, respectively, and surpasses the SOTA contrastive baseline by 1.23\%, 3.57\%, 2.00\%, and 0.33\%, respectively.
翻译:在过去几年里,自我监督的对比式学习框架进展迅速。在本文中,我们提出一个新的基于信息优化的互换差异功能,供对比性学习使用。我们将培训前的任务作为二进制分类问题模型,以产生隐含的对比效果,并预测一对是正对还是负对。我们利用Meatrize-Minimizer原则进一步改进了“N”损失功能,这种改进有助于我们在数学上跟踪问题。与现有方法不同,拟议的损失功能优化了正对对和负对的相互信息。我们还提出了参数梯度流动的封闭式表达,并比较了拟议损失函数的行为。我们用其Hessian eigen光谱进行模拟,以便分析研究SSLF框架的趋同性。拟议方法比SOTA的对比性自我监督框架(如CIFAR-10、CIFAR-100、STL-10和Tini-IMER-18)和SNet-18的对比性框架分别实现了86.2-NRA、IS-10、IS-10的精确度数据。</s>