Existing machine learning methods for causal inference usually estimate quantities expressed via the mean of potential outcomes (e.g., average treatment effect). However, such quantities do not capture the full information about the distribution of potential outcomes. In this work, we estimate the density of potential outcomes after Interventional Normalizing Flows. Specifically, we combine two normalizing flows, namely (i) a teacher flow for estimating nuisance parameters and (ii) a student flow for a parametric estimation of the density of potential outcomes. We further develop a tractable optimization objective via a one-step bias correction for an efficient and doubly robust estimation of the student flow parameters. As a result our Interventional Normalizing Flows offer a properly normalized density estimator. Across various experiments, we demonstrate that our Interventional Normalizing Flows are expressive and highly effective, and scale well with both sample size and high-dimensional confounding. To the best of our knowledge, our Interventional Normalizing Flows are the first fully-parametric, deep learning method for density estimation of potential outcomes.
翻译:因果推断的现有机算学习方法通常估计以潜在结果的平均值表示的数量(例如平均处理效果)。然而,这种数量并不反映关于潜在结果分布的全部信息。在这项工作中,我们估计了干预性正常流动之后潜在结果的密度。具体地说,我们把两种正常流动结合起来,即(一) 用于估计骚扰参数的教师流动和(二) 用于估计潜在结果密度的参数的学生流动。我们进一步通过一步步的偏差纠正来制定一个可移植的优化目标,以便对学生流动参数进行有效和加倍稳健的估计。因此,我们的干预性正常流动提供了一个适当的正常密度估计。在各种实验中,我们证明我们的干预性正常流动是直观和高度有效的,规模与抽样规模和高维调相适应。我们最了解的是,我们的干预性正常流动是对潜在结果的密度估计的第一个完全和深度的学习方法。