We consider the estimation of average treatment effects in observational studies without the standard assumption of unconfoundedness. We propose a new framework of robust causal inference under the general observational study setting with the possible existence of unobserved confounders. Our approach is based on the method of distributionally robust optimization and proceeds in two steps. We first specify the maximal degree to which the distribution of unobserved potential outcomes may deviate from that of obsered outcomes. We then derive sharp bounds on the average treatment effects under this assumption. Our framework encompasses the popular marginal sensitivity model as a special case and can be extended to the difference-in-difference and regression discontinuity designs as well as instrumental variables. Through simulation and empirical studies, we demonstrate the applicability of the proposed methodology to real-world settings.
翻译:我们考虑在观察研究中估计平均治疗效果,而不以无根据为标准假设。我们提议在一般观察研究中提出一个新的框架,在可能存在未观察到的困惑者的情况下,在一般观察研究中提出一个强有力的因果推断框架。我们的方法基于分配上稳健的优化方法,分两个步骤进行。我们首先具体说明未观察到的潜在结果的分布可能偏离蒙蔽结果的最大程度。然后我们从这一假设中得出平均治疗效果的鲜明界限。我们的框架将受欢迎的边际敏感模式作为一个特例,包括流行的边际敏感模式,可以扩大到差异和回归不连续设计以及工具变量。我们通过模拟和经验研究,展示了拟议方法对现实世界环境的适用性。