项目名称: 具有有限谱的微分方程边值问题的研究

项目编号: No.11301259

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 敖继军

作者单位: 内蒙古工业大学

项目金额: 22万元

中文摘要: 经典的Sturm-Liouville理论的结论是:对于正则的或奇异的自共轭的Sturm-Liouville问题,其谱是无界的,因而也是无穷的。但当此类问题的系数满足一定条件时,其谱却可以是有限的。之前,对于具有有限谱的微分方程边值问题的研究比较少,已有的结论也只是对二阶的Sturm-Liouville问题的研究。本课题拟深入研究具有有限谱的微分算子(也称微分方程边值问题)以及它与有限维矩阵特征值问题之间的关系,并进一步利用这种关系通过矩阵特征值问题的反谱理论给出对应具有有限谱的微分算子的反谱问题。我们对高阶的边值问题以及带有转移条件或边界条件中含有谱参数的边值问题进行研究,给出相应的有限谱结论及其与矩阵问题之间的关系;利用边值问题与矩阵特征值问题之间的关系给出对应具有有限谱的微分算子的反谱理论。上述结果将对深入研究两类问题以及无穷问题的有穷逼近起到重要作用。

中文关键词: 边值问题;有限谱;矩阵特征值问题;反谱问题;转移条件

英文摘要: The classical Sturm-Liouville theory state that the spectrum of a regular or singular, self-adjoint Sturm-Liouville problem is unbounded and therefore infinite. However,while the coefficients of the problem satisfying certain conditions,the spectrum of it may be finite. Previously, there is few studies on differential boundary value problems with finite spectrum, and the existing results are for the second order Sturm-Liouville problems only.In this program we will systematically investigate the differential operators(or differential boundary value problems) with finite spectrum and the relationship between these problems and the finite dimensional matrix eigenvalue problems. By using the given relationship above mentioned, we show the corresponding inverse spectral problems of the differential operators with finite spectrum by inverse matrix eigenvalue problems. We study higher order problems and Sturm-Liouville problems with transmission conditions and\or eigenparameter-dependent boundary conditions, show the finite spectrum results and their matrix representations; We also give the inverse spectral theory of differential operators with finite spectrum by using the relationship of the two problems. It is of great significance to both the differential boundary value problems and matrix eigenvalue problems, and

英文关键词: boundary value problem;finite spectrum;matrix eigenvalue problem;inverse spectral problem;transmission condition

成为VIP会员查看完整内容
0

相关内容

专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
117+阅读 · 2021年10月6日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
135+阅读 · 2021年3月5日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
输入梯度惩罚与参数梯度惩罚的一个不等式
PaperWeekly
0+阅读 · 2021年12月27日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
求解稀疏优化问题——半光滑牛顿方法
极市平台
45+阅读 · 2019年11月30日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
10+阅读 · 2020年6月12日
小贴士
相关主题
相关VIP内容
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
117+阅读 · 2021年10月6日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
135+阅读 · 2021年3月5日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
输入梯度惩罚与参数梯度惩罚的一个不等式
PaperWeekly
0+阅读 · 2021年12月27日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
求解稀疏优化问题——半光滑牛顿方法
极市平台
45+阅读 · 2019年11月30日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员