This paper presents a novel mechanism design for multi-item auction settings with uncertain bidders' type distributions. Our proposed approach utilizes nonparametric density estimation to accurately estimate bidders' types from historical bids, and is built upon the Vickrey-Clarke-Groves (VCG) mechanism, ensuring satisfaction of Bayesian incentive compatibility (BIC) and $\delta$-individual rationality (IR). To further enhance the efficiency of our mechanism, we introduce two novel strategies for query reduction: a filtering method that screens potential winners' value regions within the confidence intervals generated by our estimated distribution, and a classification strategy that designates the lower bound of an interval as the estimated type when the length is below a threshold value. Simulation experiments conducted on both small-scale and large-scale data demonstrate that our mechanism consistently outperforms existing methods in terms of revenue maximization and query reduction, particularly in large-scale scenarios. This makes our proposed mechanism a highly desirable and effective option for sellers in the realm of multi-item auctions.
翻译:本文介绍了一种新颖的机制设计,用于在投标人类型分布不确定的情况下进行多项目拍卖。我们提出的方法利用非参数密度估计,从历史出价中准确估计出投标人的类型。 我们提出的方法以Vickrey-Clarke-Groves(VCG)机制为基础,确保巴伊西亚奖励兼容性和美元/德尔塔元-个人合理性(IR)的满意度。为了进一步提高我们机制的效率,我们引入了两种新的减少查询战略:一种过滤方法,在估计分布产生的信任间隔内筛选潜在赢家价值区域,以及一种分类战略,在长度低于临界值时,将较低间隔的界限指定为估计类型。在小规模和大规模数据方面进行的模拟实验表明,我们的机制在收入最大化和降低查询方面一贯优于现有的方法,特别是在大规模设想中。这使我们提议的机制成为多项目拍卖领域销售者的一个非常可取和有效的选择。