Westling and Carone (2020) proposed a framework for studying the large sample distributional properties of generalized Grenander-type estimators, a versatile class of nonparametric estimators of monotone functions. The limiting distribution of those estimators is representable as the left derivative of the greatest convex minorant of a Gaussian process whose covariance kernel can be complicated and whose monomial mean can be of unknown order (when the degree of flatness of the function of interest is unknown). The standard nonparametric bootstrap is unable to consistently approximate the large sample distribution of the generalized Grenander-type estimators even if the monomial order of the mean is known, making statistical inference a challenging endeavour in applications. To address this inferential problem, we present a bootstrap-assisted inference procedure for generalized Grenander-type estimators. The procedure relies on a carefully crafted, yet automatic, transformation of the estimator. Moreover, our proposed method can be made ``flatness robust" in the sense that it can be made adaptive to the (possibly unknown) degree of flatness of the function of interest. The method requires only the consistent estimation of a single scalar quantity, for which we propose an automatic procedure based on numerical derivative estimation and the generalized jackknife. Under random sampling, our inference method can be implemented using a computationally attractive exchangeable bootstrap procedure. We illustrate our methods with examples and we also provide a small simulation study. The development of formal results is made possible by some technical results that may be of independent interest.
翻译:Westling和Carone(2020)提出了一种框架,用于研究广义Grenander型估计器的大样本分布性质,该工具是一种多功能的单调函数的非参数估计器。这些估计器的极限分布可表示为高斯过程的最大凸次小量的左导数,其协方差核可以是复杂的,且当感兴趣的函数的平坦度程度未知时,其单项式均值也可能是未知的(当阶数未知时)。标准的非参数bootstrap即使在单项式均值的阶数已知的情况下也无法一致地逼近广义Grenander型估计器的大样本分布,因此在应用中进行统计推断是一项具有挑战性的任务。为了解决这一推理问题,我们提出了广义Grenander型估计器的bootstrap辅助推理程序。该程序依赖于对估计器进行了精心设计的但自动的转换。此外,我们提出的方法可以使“平坦度鲁棒性”成立,即可以对感兴趣的函数的(可能未知的)平坦度程度进行自适应。该方法仅需要对单个标量量进行一致的估计,我们提出了一种基于数值导数估计和广义Jackknife的自动程序。在随机抽样情况下,我们的推理方法可以使用计算吸引人的可交换bootstrap程序实现。我们用例子说明了我们的方法,并且还提供了一个小的模拟研究。正式结果的发展是通过一些可能具有独立兴趣的技术结果实现的。