We compute the asymptotic empirical spectral distribution of a non-linear random matrix model by using the resolvent method. Motivated by random neural networks, we consider the random matrix $M = Y Y^\ast$ with $Y = f(WX)$, where $W$ and $X$ are random rectangular matrices with i.i.d. centred entries and $f$ is a non-linear smooth function which is applied entry-wise. We prove that the Stieltjes transform of the limiting spectral distribution satisfies a quartic self-consistent equation up to some error terms, which is exactly the equation obtained by [Pennington, Worah] and [Benigni, P\'{e}ch\'{e}] with the moment method approach. In addition, we extend the previous results to the case of additive bias $Y=f(WX+B)$ with $B$ being an independent rank-one Gaussian random matrix, closer modelling the neural network infrastructures encountering in practice. Our approach following the \emph{resolvent method} is more robust than the moment method and is expected to provide insights also for models where the combinatorics of the latter become intractable.
翻译:我们用固态方法计算非线性随机矩阵模型的非线性实验光谱分布。 在随机神经网络的驱动下, 我们考虑随机矩阵 $M = Y Y ast$ = Y Y = f( WX)$, 其中W$ 和 $X$是随机的矩形矩阵, 使用 i. d. 中心条目 和 $f$ 是一个非线性平滑功能, 使用 输入 。 我们证明, 限制光谱分布的 Stieltjes 转换满足了某些错误条件的等式, 达到某些错误条件, 这正是[ Pennington, Worrah] 和 [ Benigni, P\\ { e}\ ch\ {e} 获得的等式, 即时尚方法。 此外, 我们将先前的结果推广到添加偏差 $Y=f( WX+B) 的情况, 是一个独立的一等式随机矩阵, 更接近于实践中遇到的神经网络基础设施的模拟。 我们采用的方法, 其中的时空洞察法也更可靠。