This paper discusses experimental design to estimate welfare-maximizing policies. We consider a setting where units are organized into large, finitely many independent clusters and interact over unobserved dimensions within each cluster. The contribution of this paper is two-fold. First, we construct a test for whether a welfare-improving treatment configuration exists and hence worth learning by conducting a larger scale experiment. Second, we introduce an adaptive randomization procedure to estimate welfare-maximizing individual treatment allocation rules valid under unobserved interference. We derive asymptotic properties of the marginal effects estimators and finite-sample regret guarantees of the policy. Finally, we illustrate the method's advantage in simulations calibrated to an existing experiment on information diffusion.
翻译:本文讨论了估算福利最大化政策的实验性设计。 我们考虑将单位组织成大型、 有限数量的独立组群并在每个组群中进行互动, 该文件的贡献是双重的。 首先, 我们设计了一个测试, 测试福利改善治疗配置是否存在, 因此值得通过进行规模更大的实验来学习。 其次, 我们引入一个适应性随机化程序, 评估福利最大化的个人治疗分配规则, 这些规则在不受观察的干扰下有效 。 我们从中得出边缘效应估测员和该政策的有限遗憾保证的无药用特性。 最后, 我们展示了该方法在模拟中与现有信息传播实验相校准的优势 。