We introduce the Graph Mixture Density Networks, a new family of machine learning models that can fit multimodal output distributions conditioned on graphs of arbitrary topology. By combining ideas from mixture models and graph representation learning, we address a broader class of challenging conditional density estimation problems that rely on structured data. In this respect, we evaluate our method on a new benchmark application that leverages random graphs for stochastic epidemic simulations. We show a significant improvement in the likelihood of epidemic outcomes when taking into account both multimodality and structure. The empirical analysis is complemented by two real-world regression tasks showing the effectiveness of our approach in modeling the output prediction uncertainty. Graph Mixture Density Networks open appealing research opportunities in the study of structure-dependent phenomena that exhibit non-trivial conditional output distributions.
翻译:我们引入了图表混合密度网络,这是一套新的机器学习模型,可以适应以任意地形图为条件的多式联运产出分布模式。我们通过将混合模型和图形代表性学习中的想法结合起来,解决了依赖结构化数据的更广泛的具有挑战性的有条件密度估计问题。在这方面,我们评估了我们采用的新基准应用方法,该方法利用随机图进行随机模型模拟。在考虑多式联运和结构时,我们显示了流行病结果的可能性有了显著的改善。经验分析得到了两个真实世界回归任务的补充,这两个任务显示了我们模拟产出预测不确定性的方法的有效性。图像混凝土密度网络在研究基于结构的、显示非三边有条件产出分布的现象时打开了吸引研究的机会。