Until recently, applications of neural networks in machine learning have almost exclusively relied on real-valued networks. It was recently observed, however, that complex-valued neural networks (CVNNs) exhibit superior performance in applications in which the input is naturally complex-valued, such as MRI fingerprinting. While the mathematical theory of real-valued networks has, by now, reached some level of maturity, this is far from true for complex-valued networks. In this paper, we analyze the expressivity of complex-valued networks by providing explicit quantitative error bounds for approximating $C^n$ functions on compact subsets of $\mathbb{C}^d$ by complex-valued neural networks that employ the modReLU activation function, given by $\sigma(z) = \mathrm{ReLU}(|z| - 1) \, \mathrm{sgn} (z)$, which is one of the most popular complex activation functions used in practice. We show that the derived approximation rates are optimal (up to log factors) in the class of modReLU networks with weights of moderate growth.


翻译:直到最近,神经网络在机器学习中的应用几乎完全依赖实际价值的网络。然而,最近人们发现,复杂价值的神经网络(CVNNs)在应用中表现优异,其投入自然具有复杂价值,例如MRI指纹。虽然实际价值网络的数学理论已经达到某种成熟程度,但对于复杂价值的网络来说,这一点远非如此。在本文件中,我们通过提供明确的量化错误界限来分析复杂价值网络的表达性,以近似于美元(c)美元(C)的紧凑子集的美元(CVNNS)的功能,而复杂价值的神经网络使用ModReLU的激活功能,根据 $\sgma(z) =\ mathrm{RU}(z)-1)\\\\ mathrm{sgn}(z)\ sgn}(z)$,这是实践中最受欢迎的复杂激活功能之一。我们表明,在MdReLU网络类别中,衍生的近率是最佳(直至记录因素)。

1
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
50+阅读 · 2020年12月14日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
50+阅读 · 2020年8月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年1月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Non-Parametric Quickest Mean Change Detection
Arxiv
0+阅读 · 2021年8月25日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年1月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员