Compressed Sensing (CS) theory simultaneously realizes the signal sampling and compression process, and can use fewer observations to achieve accurate signal recovery, providing a solution for better and faster transmission of massive data. In this paper, a ternary sampling matrix-based method with attention mechanism is proposed with the purpose to solve the problem that the CS sampling matrices in most cases are random matrices, which are irrelative to the sampled signal and need a large storage space. The proposed method consists of three components, i.e., ternary sampling, initial reconstruction and deep reconstruction, with the emphasis on the ternary sampling. The main idea of the ternary method (-1, 0, +1) is to introduce the attention mechanism to evaluate the importance of parameters at the sampling layer after the sampling matrix is binarized (-1, +1), followed by pruning weight of parameters, whose importance is below a predefined threshold, to achieve ternarization. Furthermore, a compressed sensing algorithm especially for image reconstruction is implemented, on the basis of the ternary sampling matrix, which is called ATP-Net, i.e., Attention-based ternary projection network. Experimental results show that the quality of image reconstruction by means of ATP-Net maintains a satisfactory level with the employment of the ternary sampling matrix, i.e., the average PSNR on Set11 is 30.4 when the sampling rate is 0.25, approximately 6% improvement compared with that of DR2-Net.


翻译:压缩(CS)理论同时认识到信号取样和压缩过程,并且可以使用较少的观测来实现准确的信号恢复,为更好更快地传送大量数据提供解决办法。在本文件中,提出了一种长期抽样矩阵法,以关注机制为基础,目的是解决以下问题,即CS抽样矩阵在大多数情况下是随机矩阵,与抽样信号不相容,需要巨大的储存空间。拟议方法由三个组成部分组成,即长期取样、初步重建和深度重建,重点是长期取样。长期方法(-1,0,+1)的主要想法是引入关注机制,评估取样矩阵二进化(-1,+1)后取样层参数的重要性,然后是标定的参数重量,其重要性低于抽样信号的预定阈值,需要巨大的储存空间。此外,在称为ATP-Net的永久取样矩阵的基础上,即基于注意的模型基础,在标定的30比值改进模型网络上,以精确的升级模型质量网络为基础,通过测试质量的升级的升级模型,以维持比例的升级模型的升级。

0
下载
关闭预览

相关内容

压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。 compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意。 与稀疏表示不同,压缩感知关注的是如何利用信号本身所具有的稀疏性,从部分观测样本中恢复原信号。
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
已删除
将门创投
3+阅读 · 2017年9月12日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
已删除
将门创投
3+阅读 · 2017年9月12日
Top
微信扫码咨询专知VIP会员