Differential privacy is the de facto standard for protecting privacy in a variety of applications. One of the key challenges is private data release, which is particularly relevant in scenarios where limited information about the desired statistics is available beforehand. Recent work has presented a differentially private data release algorithm that achieves optimal rates of order $n^{-1/d}$, with $n$ being the size of the dataset and $d$ being the dimension, for the worst-case error over all Lipschitz continuous statistics. This type of guarantee is desirable in many practical applications, as for instance it ensures that clusters present in the data are preserved. However, due to the "slow" rates, it is often infeasible in practice unless the dimension of the data is small. We demonstrate that these rates can be significantly improved to $n^{-1/s}$ when only guarantees over s-sparse Lipschitz continuous functions are required, or to $n^{-1/(s+1)}$ when the data lies on an unknown s-dimensional subspace, disregarding logarithmic factors. We therefore obtain practically meaningful rates for moderate constants $s$ which motivates future work on computationally efficient approximate algorithms for this~problem.


翻译:不同隐私是各种应用中保护隐私的实际标准。关键的挑战之一是私人数据发布,这在事先获得关于所需统计数据的信息有限的情况下特别相关。最近的工作提出了一种差别化的私人数据发布算法,这种算法达到最佳的排序 $n ⁇ -1/d}美元,其中美元为数据集的大小,美元为维度,在所有Lipschitz连续统计中最差的错误中,美元为维度最差的。这种保证在许多实际应用中是可取的,例如,它确保数据中的组群得到保存。然而,由于“低”率,除非数据规模小,否则这种数据在实际中往往不可行。我们证明,只要需要保证S-sparch Lipschitz连续功能,或当数据位于未知的平面次空间,而无视对数因素,这些数据就等于$-1/(s+1)}美元。因此,我们为中值恒值获得实际有意义的率,美元,这能激励未来高效的算算算法近。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员