We propose a new wavelet-based method for density estimation when the data are size-biased. More specifically, we consider a power of the density of interest, where this power exceeds 1/2. Warped wavelet bases are employed, where warping is attained by some continuous cumulative distribution function. This can be seen as a general framework in which the conventional orthonormal wavelet estimation is the case where warping distribution is the standard uniform c.d.f. We show that both linear and nonlinear wavelet estimators are consistent, with optimal and/or near-optimal rates. Monte Carlo simulations are performed to compare four special settings which are easy to interpret in practice. An application with a real dataset on fatal traffic accidents involving alcohol illustrates the method. We observe that warped bases provide more flexible and superior estimates for both simulated and real data. Moreover, we find that estimating the power of a density (for instance, its square root) further improves the results.
翻译:当数据大小偏差时,我们建议一种新的以波子为基础的密度估计方法。 更具体地说, 我们考虑的是利息密度的能量, 其功率超过1/ /2。 使用扭曲的波子基, 其扭曲是通过某种连续的累积分布函数实现的。 这可以被视为一个总框架, 常规的正态波子估计是扭曲分布是标准的c. d. f. 。 我们发现线性和非线性波子估计器都与最佳和/或接近最佳的速率一致。 蒙特卡洛模拟是用来比较四种特殊设置的, 而这些设置在实践上容易解释。 含有涉及酒精的致命交通事故的真实数据集的应用说明了该方法。 我们观察到, 扭曲的基为模拟数据和真实数据提供了更灵活和更好的估计。 此外, 我们发现, 估计密度( 例如, 平方根) 的功率会进一步提高结果。