Dataset distillation aims to generate small datasets with little information loss as large-scale datasets for reducing storage and training costs. Recent state-of-the-art methods mainly constrain the sample generation process by matching synthetic images and the original ones regarding gradients, embedding distributions, or training trajectories. Although there are various matching objectives, currently the method for selecting original images is limited to naive random sampling. We argue that random sampling inevitably involves samples near the decision boundaries, which may provide large or noisy matching targets. Besides, random sampling cannot guarantee the evenness and diversity of the sample distribution. These factors together lead to large optimization oscillations and degrade the matching efficiency. Accordingly, we propose a novel matching strategy named as \textbf{D}ataset distillation by \textbf{RE}present\textbf{A}tive \textbf{M}atching (DREAM), where only representative original images are selected for matching. DREAM is able to be easily plugged into popular dataset distillation frameworks and reduce the matching iterations by 10 times without performance drop. Given sufficient training time, DREAM further provides significant improvements and achieves state-of-the-art performances.


翻译:数据蒸馏法旨在生成信息损失很少的小型数据集。 最近的先进方法主要通过匹配合成图像和关于梯度、 嵌入分布或训练轨迹的原始图像来限制样本生成过程。 虽然有各种匹配目标, 目前选择原始图像的方法仅限于天性随机抽样。 我们争辩说, 随机抽样必然涉及靠近决定边界的样本, 这可能提供大或吵闹的匹配目标。 此外, 随机抽样无法保证样本分布的平衡性和多样性。 这些因素加在一起导致大规模优化振荡和降低匹配效率。 因此, 我们提出一个新的匹配战略, 名为\ textbf{ resent\ resent\ textb{ a} a} attitual f{M}atchinging (DREAM), 在那里只选择有代表性的原始图像进行匹配。 DREAM 能够很容易地插入流行的数据集进一步蒸馏框架, 并减少匹配的匹配率效率。 因此, 我们提出一个新的匹配策略叫做\ textbf{D} data} dres develop the press 足够的时间, 提供有效的改进。</s>

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2021年6月29日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员