The relative interlevel set cohomology (RISC) is an invariant of real-valued continuous functions closely related to the Mayer--Vietoris pyramid introduced by Carlsson, de Silva, and Morozov. As such, the relative interlevel set cohomology is a parametrization of the cohomology vector spaces of all open interlevel sets relative complements of closed interlevel sets. We provide a structure theorem, which applies to the RISC of real-valued continuous functions whose open interlevel sets have finite-dimensional cohomology in each degree. Moreover, we show this tameness assumption is in some sense equivalent to $q$-tameness as introduced by Chazal, de Silva, Glisse, and Oudot. Furthermore, we provide the notion of an interleaving for RISC and we show that it is stable in the sense that any space with two functions that are $\delta$-close induces a $\delta$-interleaving of the corresponding relative interlevel set cohomologies. Finally, we provide an elementary form of quantitative homotopy invariance for RISC.
翻译:相对的跨层集合共生体(RISC)是一个与卡尔松、德席尔瓦和莫罗佐夫引入的Mayer-Veaoris金字塔密切相关的真正价值连续功能的变异体。因此,相对的跨层共生体是所有开放的跨层组合的共生体矢量空间的相近补充。我们提供了一个结构理论,该理论适用于RERC的具有实际价值的连续功能,这些功能的开层间组合在每个程度上都有一定的维度共生体。此外,我们展示了这个 tameness假设在某种意义上相当于Chazal、de Silva、Gliisse和Oudot引入的美元。此外,我们提供了一个共生共生概念,即所有具有两个功能即$delta$-cloes 的共产体空间都具有相应的相对的相邻级间共生值。最后,我们提供了一种基本形式的量化的同质科学。