We present a general technique, based on parametric search with some twist, for solving a variety of optimization problems on a set of semi-algebraic geometric objects of constant complexity. The common feature of these problems is that they involve a `growth parameter' $r$ and a semi-algebraic predicate $\Pi(o,o';r)$ of constant complexity on pairs of input objects, which depends on $r$ and is monotone in $r$. One then defines a graph $G(r)$ whose edges are all the pairs $(o,o')$ for which $\Pi(o,o';r)$ is true, and seeks the smallest value of $r$ for which some monotone property holds for $G(r)$. Problems that fit into this context include (i) the reverse shortest path problem in unit-disk graphs, recently studied by Wang and Zhao, (ii) the same problem for weighted unit-disk graphs, with a decision procedure recently provided by Wang and Xue, (iii) extensions of these problems to three and higher dimensions, (iv) the discrete Fr\'echet distance with one-sided shortcuts in higher dimensions, extending the study by Ben Avraham et al., (v) perfect matchings in intersection graphs: given, e.g., a set of fat ellipses of roughly the same size, find the smallest value $r$ such that if we expand each of the ellipses by $r$, the resulting intersection graph contains a perfect matching, (vi) generalized distance selection problems: given, e.g., a set of disjoint segments, find the $k$'th smallest distance among the pairwise distances determined by the segments, for a given (sufficiently small but superlinear) parameter $k$, and (vii) the maximum-height independent towers problem, in which we want to erect vertical towers of maximum height over a 1.5-dimensional terrain so that no pair of tower tips are mutually visible. We obtain significantly improved solutions for problems (i), (ii) and (vi), and new efficient solutions to the other problems.
翻译:我们提出一种通用技术, 其基础是以一些曲折的参数搜索为基础, 以解决一套固定复杂度的半数学几何物体上的各种优化问题。 这些问题的共同特点是, 它们涉及“ 增长参数 ” $ 美元, 和半数学的顶值 $ pi( o, o;r) 输入对象对面的固定复杂性$, 它取决于美元, 以美元为单数。 然后, 一个定义一个图形 $( r), 它的边缘是一对( o, o) 美元, 美元, 美元, 美元, 美元, 美元。 这些问题的最小值是“ 增长参数 ” $, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 等, 等, 等, 等, 问题, 等, 等, 等, 等, 等, 等, 等, 等, 等, 等, 等, 。 。 。 。 。 等,, 。 。 。 。 等, 。 。 等, 等, 等, 。