We give a simple and complete characterization of which functions can be deterministically computed by anonymous processes in disconnected dynamic networks, depending on the number of leaders in the network. In addition, we provide efficient distributed algorithms for computing all such functions assuming minimal or no knowledge about the network. Each of our algorithms comes in two versions: one that terminates with the correct output and a faster one that stabilizes on the correct output without explicit termination. Notably, all of our algorithms have running times that scale linearly both with the number of processes and with a parameter of the network which we call "dynamic disconnectivity". We also provide matching lower bounds, showing that all our algorithms are asymptotically optimal for any fixed number of leaders. While most of the existing literature on anonymous dynamic networks relies on classical mass-distribution techniques, our work makes use of a recently introduced combinatorial structure called "history tree". Among other contributions, our results establish a new state of the art on two popular fundamental problems for anonymous dynamic networks: leaderless "Average Consensus" (i.e., computing the mean value of input numbers distributed among the processes) and multi-leader "Counting" (i.e., determining the exact number of processes in the network).
翻译:我们给出一个简单完整的描述,说明哪些功能可以由断开的动态网络中的匿名程序来决定,取决于网络领导者的数量。 此外,我们提供有效的分布式算法来计算所有这些功能,假设对网络知之甚少或完全不知情。我们的每个算法都分为两个版本:一个以正确输出结束,一个以稳定正确输出而无需明确终止的更快结构。值得注意的是,我们的所有算法都有运行时间,以线性方式计算,以线性方式计算,既包括流程的数量,也包括我们称之为“动力脱节”的网络参数。我们还提供匹配的下限,表明我们的所有算法对于固定数量的领导者来说,都是尽可能的随机最佳的。虽然关于匿名动态网络的现有文献大多依赖传统的批量分配技术,但我们的工作使用了最近推出的称为“历史树”的组合结构。除其他贡献外,我们的成果为匿名动态网络的两个流行的基本问题确立了一种新状态:无领导者“虚拟共识” (i.e.计算在确定流程中分布在网络中的平均输入数字的平均值) 和多领导者“直径” 。