Shuffle model of differential privacy is a novel distributed privacy model based on a combination of local privacy mechanisms and a secure shuffler. It has been shown that the additional randomisation provided by the shuffler improves privacy bounds compared to the purely local mechanisms. Accounting tight bounds, however, is complicated by the complexity brought by the shuffler. The recently proposed numerical techniques for evaluating $(\varepsilon,\delta)$-differential privacy guarantees have been shown to give tighter bounds than commonly used methods for compositions of various complex mechanisms. In this paper, we show how to obtain accurate bounds for adaptive compositions of general $\varepsilon$-LDP shufflers using the analysis by Feldman et al. (2021) and tight bounds for adaptive compositions of shufflers of $k$-randomised response mechanisms, using the analysis by Balle et al. (2019). We show how to speed up the evaluation of the resulting privacy loss distribution from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$, where $n$ is the number of users, without noticeable change in the resulting $\delta(\varepsilon)$-upper bounds. We also demonstrate looseness of the existing bounds and methods found in the literature, improving previous composition results significantly.
翻译:不同隐私的打碎模式是一种新颖的分布式隐私模式,它基于当地隐私机制和安全打碎器的组合。 已经表明, 与纯本地机制相比, 洗碎器提供的额外随机化改善了隐私界限。 然而, 会计的严格界限由于洗碎器带来的复杂性而变得复杂。 最近提出的用于评估$( varepsilon,\delta) 美元- 差异隐私保障的数字技术显示, 与各种复杂机制的构成通常使用的方法相比, 提供了更严格的范围。 在本文中, 我们展示了如何利用 Feldman 等人的分析( 2021年) 和 洗涤器的适应性构成( $- varepsilon,\ delta) 的精确界限。 使用 Balle 等人 ( 2019年) 的分析, 我们展示了如何加快对由此产生的隐私损失分布的评估, 从$\mathcal=$( mathcal) $ (n) 美元 美元- LDP shlufflers 的适应性( $) (n) (n) rudeal defilal deal) rudealal deal defal deal s folfulal) 。 我们还找到了的用户数。