A robot operating in unstructured environments must be able to discriminate between different grasping styles depending on the prospective manipulation task. Having a system that allows learning from remote non-expert demonstrations can very feasibly extend the cognitive skills of a robot for task-oriented grasping. We propose a novel two-step framework towards this aim. The first step involves grasp area estimation by segmentation. We receive grasp area demonstrations for a new task via interactive segmentation, and learn from these few demonstrations to estimate the required grasp area on an unseen scene for the given task. The second step is autonomous grasp estimation in the segmented region. To train the segmentation network for few-shot learning, we built a grasp area segmentation (GAS) dataset with 10089 images grouped into 1121 segmentation tasks. We benefit from an efficient meta learning algorithm for training for few-shot adaptation. Experimental evaluation showed that our method successfully detects the correct grasp area on the respective objects in unseen test scenes and effectively allows remote teaching of new grasp strategies by non-experts.
翻译:机器人在无结构环境中的操作必须能够根据潜在的操作任务区分不同的抓取风格。建立一个允许远程非专家人士示范学习的系统非常有可能扩展机器人的认知能力,以实现任务导向的抓取。我们提出了一个新颖的两步框架。第一步涉及通过分割估计抓取区域。我们通过交互式分割接收新任务的抓取区域演示,并从这些少量演示中学习以估算给定任务的未见场景中所需的抓取区域。第二个步骤是自主抓取估计在分割区域内。为了为少样本适应性训练分割网络,我们构建了一个抓取区域分割(GAS)数据集,包括10089张图片,分为1121个分割任务。我们从一个有效的元学习算法中受益,用于训练少样本适应性。实验评估表明,我们的方法成功地检测到了未见测试场景中物体的正确抓取区域,并有效地允许远程非专家人士教授新的抓取策略。