We study the problems of identity and closeness testing of $n$-dimensional product distributions. Prior works by Canonne, Diakonikolas, Kane and Stewart (COLT 2017) and Daskalakis and Pan (COLT 2017) have established tight sample complexity bounds for non-tolerant testing over a binary alphabet: given two product distributions $P$ and $Q$ over a binary alphabet, distinguish between the cases $P = Q$ and $d_{\mathrm{TV}}(P, Q) > \epsilon$. We build on this prior work to give a more comprehensive map of the complexity of testing of product distributions by investigating tolerant testing with respect to several natural distance measures and over an arbitrary alphabet. Our study gives a fine-grained understanding of how the sample complexity of tolerant testing varies with the distance measures for product distributions. In addition, we also extend one of our upper bounds on product distributions to bounded-degree Bayes nets.
翻译:我们研究了以美元为单位的产品分销的特性和近距离测试问题,Canonne、Diakonikolas、Kane和Stewart(COLT 2017年)以及Dakalakis和Pan(COLT 2017年)先前的工作为非容性测试确定了严格的试样复杂度,使用二元字母进行非容性测试:给两种产品分销的试样复杂度与产品分销的距离措施不同,我们区分了美元=Q和美元= mathrm{TV{(P,Q) >\epsilon。我们在过去的工作基础上,通过调查若干自然距离测量和任意字母的容度测试,提供了更加全面的产品分销测试复杂性图。我们的研究对容忍性测试的抽样复杂性如何随产品分销的距离措施而变化有了细致的了解。此外,我们还将产品分销的上限扩大到约束度贝奈斯网。