The indirect effect of an exposure on an outcome through an intermediate variable can be identified by a product of regression coefficients under certain causal and regression modeling assumptions. Thus, the null hypothesis of no indirect effect is a composite null hypothesis, as the null holds if either regression coefficient is zero. A consequence is that existing hypothesis tests are either severely underpowered near the origin (i.e., when both coefficients are small with respect to standard errors) or do not preserve type 1 error uniformly over the null hypothesis space. We propose hypothesis tests that (i) preserve level alpha type 1 error, (ii) meaningfully improve power when both true underlying effects are small relative to sample size, and (iii) preserve power when at least one is not. One approach gives a closed-form test that is minimax optimal with respect to local power over the alternative parameter space. Another uses sparse linear programming to produce an approximately optimal test for a Bayes risk criterion. We provide an R package that implements the minimax optimal test.


翻译:根据某些因果和回归模型假设,可以通过回归系数的产物确定通过中间变量接触结果的间接影响。因此,不产生间接影响的无效假设是一种综合的无效假设,如果任何一种回归系数为零,则无效即为无效,其后果是,现有的假设试验要么在来源地附近严重不足(即两个系数相对于标准误差而言都很小),要么没有统一保存在无效假设空间上的第1类错误。我们提议进行假设试验,以便(一) 保持阿尔法第1类的误差,(二) 在真实基本效应与样本大小相比小的情况下,明显提高功率,以及(三) 在至少一个不发生误差时,保留功率。一种方法是对替代参数空间的当地功率进行最优的封闭式试验。另一种是使用稀疏线性编程,以产生对海湾风险标准最优的大致测试。我们提供一套R包,以实施最优试验。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员