The noisy matrix completion problem, which aims to recover a low-rank matrix $\mathbf{X}$ from a partial, noisy observation of its entries, arises in many statistical, machine learning, and engineering applications. In this paper, we present a new, information-theoretic approach for active sampling (or designing) of matrix entries for noisy matrix completion, based on the maximum entropy design principle. One novelty of our method is that it implicitly makes use of uncertainty quantification (UQ) -- a measure of uncertainty for unobserved matrix entries -- to guide the active sampling procedure. The proposed framework reveals several novel insights on the role of compressive sensing (e.g., coherence) and coding design (e.g., Latin squares) on the sampling performance and UQ for noisy matrix completion. Using such insights, we develop an efficient posterior sampler for UQ, which is then used to guide a closed-form sampling scheme for matrix entries. Finally, we illustrate the effectiveness of this integrated sampling / UQ methodology in simulation studies and two applications to collaborative filtering.
翻译:雄心勃勃的矩阵完成问题旨在从对条目进行局部、吵闹的观察中回收低位矩阵 $\ mathbf{X}美元,这个问题在许多统计、机器学习和工程应用中出现。在本文件中,我们介绍了一种新的信息理论方法,用于根据最大酶设计原则积极取样(或设计)用于完成噪音矩阵完成的矩阵条目。我们方法的一个新颖之处是,它隐含地使用不确定性量化(UQ) -- -- 未观测的矩阵条目的一种不确定性衡量标准 -- -- 来指导主动取样程序。拟议框架揭示了对压缩感学(例如一致性)和编码设计(例如拉丁方)在取样性中的作用的一些新颖见解,以及用于完成噪音矩阵完成的UQ。我们利用这种洞察,为UQ开发一个高效的远地点取样器,然后用来指导矩阵条目的封闭式取样计划。最后,我们要说明这种综合采样/UQ方法在模拟研究中的有效性,以及用于合作过滤的两个应用。