In applications such as natural language processing or computer vision, one is given a large $n \times d$ matrix $A = (a_{i,j})$ and would like to compute a matrix decomposition, e.g., a low rank approximation, of a function $f(A) = (f(a_{i,j}))$ applied entrywise to $A$. A very important special case is the likelihood function $f\left( A \right ) = \log{\left( \left| a_{ij}\right| +1\right)}$. A natural way to do this would be to simply apply $f$ to each entry of $A$, and then compute the matrix decomposition, but this requires storing all of $A$ as well as multiple passes over its entries. Recent work of Liang et al.\ shows how to find a rank-$k$ factorization to $f(A)$ for an $n \times n$ matrix $A$ using only $n \cdot \operatorname{poly}(\epsilon^{-1}k\log n)$ words of memory, with overall error $10\|f(A)-[f(A)]_k\|_F^2 + \operatorname{poly}(\epsilon/k) \|f(A)\|_{1,2}^2$, where $[f(A)]_k$ is the best rank-$k$ approximation to $f(A)$ and $\|f(A)\|_{1,2}^2$ is the square of the sum of Euclidean lengths of rows of $f(A)$. Their algorithm uses three passes over the entries of $A$. The authors pose the open question of obtaining an algorithm with $n \cdot \operatorname{poly}(\epsilon^{-1}k\log n)$ words of memory using only a single pass over the entries of $A$. In this paper we resolve this open question, obtaining the first single-pass algorithm for this problem and for the same class of functions $f$ studied by Liang et al. Moreover, our error is $\|f(A)-[f(A)]_k\|_F^2 + \operatorname{poly}(\epsilon/k) \|f(A)\|_F^2$, where $\|f(A)\|_F^2$ is the sum of squares of Euclidean lengths of rows of $f(A)$. Thus our error is significantly smaller, as it removes the factor of $10$ and also $\|f(A)\|_F^2 \leq \|f(A)\|_{1,2}^2$. We also give an algorithm for regression, pointing out an error in previous work, and empirically validate our results.


翻译:在自然语言处理或计算机视觉等应用程序中, 给一个应用到$A( a_ i, j}) 的选项是 $f\ left( A\ right) =\ lift( a\ like) dgroup $A = (a_ i, j}) $。 一个非常重要的特例是 可能性 $f\ left( A\ right) =\ left( a\ lift) a\ like( like) a like( like) $( a_ like) = (a_ like) $( a a liver) $( a flex2, a lish2_ listal =_ legal_ a legal2, A a liver=_ legal=_ a likelemental_ a $1, (ax) liang liang 和 a liangar_ a lax_ a lax_ for motional modeal_ lia lia li lia lia li i) li 。 这样的最近工作 = = = = = = ==== = = ============================== ============ = =================== ==== ========xxxx

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
0+阅读 · 2021年9月16日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员