We generalize standard credal set models for imprecise probabilities to include higher order credal sets -- confidences about confidences. In doing so, we specify how an agent's higher order confidences (credal sets) update upon observing an event. Our model begins to address standard issues with imprecise probability models, like Dilation and Belief Inertia. We conjecture that when higher order credal sets contain all possible probability functions, then in the limiting case the highest order confidences converge to form a uniform distribution over the first order credal set, where we define uniformity in terms of the statistical distance metric (total variation distance). Finite simulation supports the conjecture. We further suggest that this convergence presents the total-variation-uniform distribution as a natural, privileged prior for statistical hypothesis testing.
翻译:我们普及了不准确概率的标准信标设定模型, 以包括更高订单信标集 -- -- 信任度的可信度。 在此过程中, 我们具体说明了代理人在观察事件时如何更新更高订单信任度( 信标集) 。 我们的模型开始用不精确概率模型来解决标准问题, 如Dlicals and Conslication Inertia。 我们推测, 当高订单信标集包含所有可能的概率功能时, 在有限的情况下, 最高排序信任度会聚集到第一个订单信标集上, 形成统一的分布, 我们在此定义统计距离指标( 完全变异距离) 的统一性。 精度模拟支持推测性。 我们进一步建议, 这种趋同性将完全变异统一分布作为自然的、 优先的统计假设测试前程。