In this work, we introduce statistical testing under distributional shifts. We are interested in the hypothesis $P^* \in H_0$ for a target distribution $P^*$, but observe data from a different distribution $Q^*$. We assume that $P^*$ is related to $Q^*$ through a known shift $\tau$ and formally introduce hypothesis testing in this setting. We propose a general testing procedure that first resamples from the observed data to construct an auxiliary data set and then applies an existing test in the target domain. We prove that if the size of the resample is at most $o(\sqrt{n})$ and the resampling weights are well-behaved, this procedure inherits the pointwise asymptotic level and power from the target test. If the map $\tau$ is estimated from data, we can maintain the above guarantees under mild conditions if the estimation works sufficiently well. We further extend our results to uniform asymptotic level and a different resampling scheme. Testing under distributional shifts allows us to tackle a diverse set of problems. We argue that it may prove useful in reinforcement learning and covariate shift, we show how it reduces conditional to unconditional independence testing and we provide example applications in causal inference.


翻译:在这项工作中,我们在分布式转换中引入了统计测试。 我们感兴趣的是用于目标分配的假设$P $$ $$ $ $ $ $ $ $ $ 美元,但观察不同分配的数据。 我们假设美元通过已知的转换 $ tau$ $ $ $ $ $ $ $ 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 的假设 。 我们提议了一个一般测试程序, 以观察数据建模后, 建立一套简单的测试程序 。 我们进一步将我们的结果推广到 统一 的, 在 分配式转换 中测试 解决 一系列问题 。 我们主张, 在 测试 测试 中, 将 测试 以 以 无条件 的 测试 来 降低 的 以 以 的 以 以 以 以 以 以 以 以 以 以 以 以 以 的方式 以 以 以 以 以 以 以 以 来 以 以 以 以 以 以 以 以 以 以 以 表示 以 以 以 以 以 以 以 以 以 表示 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 表示 以 以 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 以 的 以 的 的 的 的 的 的 的 的 的 的 的 的 的 以 以 以 以 以 以 以 以 的 的 以 以 以 以 的 的 的 以 以 的 的 以 以 的 的 的 的

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
11+阅读 · 2019年8月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Formalizing Distribution Inference Risks
Arxiv
0+阅读 · 2021年9月14日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员