Recombination is a fundamental evolutionary force, but it is difficult to quantify because the effect of a recombination event on patterns of variation in a sample of genetic data can be hard to discern. Estimators for the recombination rate, which are usually based on the idea of integrating over the unobserved possible evolutionary histories of a sample, can therefore be noisy. Here we consider a related question: how would an estimator behave if the evolutionary history actually was observed? This would offer an upper bound on the performance of estimators used in practice. In this paper we derive an expression for the maximum likelihood estimator for the recombination rate based on a continuously observed, multi-locus, Wright--Fisher diffusion of haplotype frequencies, complementing existing work for an estimator of selection. We show that, contrary to selection, the estimator has unusual properties because the observed information matrix can explode in finite time whereupon the recombination parameter is learned without error. We also show that the recombination estimator is robust to the presence of selection in the sense that incorporating selection into the model leaves the estimator unchanged. We study the properties of the estimator by simulation and show that its distribution can be quite sensitive to the underlying mutation rates.


翻译:重新组合是一种基本的进化力量, 但很难量化, 因为重组事件对基因数据样本中变化模式的变化模式的影响很难辨别。 因此, 重新组合率的预测器通常基于对未观测到的样本可能的进化史进行整合的理念, 因此可能会很吵。 我们在这里考虑一个相关的问题: 如果实际观察到进化历史, 估计者会如何行事? 这将给实践中使用的估计者性能带来一个上限。 在本文中, 我们根据持续观察、 多路盘、 Wright- Fisher 传播机型频率来显示重组率的最大可能性估计器的表达器, 以补充当前对选择的估算器的工作。 我们表明, 与选择相反, 估计器有不寻常的特性, 因为观测到的信息矩阵可以在有限的时间内爆炸, 在那里可以毫无错误地学习再组合参数。 我们还显示, 重新组合估计器的精确度与选择方法的精确度相符, 其选择率可以通过感官的感应感应, 将其选择率纳入模型, 显示模型的精确度, 将显示, 选择结果将显示为模型的精度。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
0+阅读 · 2023年2月14日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员