Recombination is a fundamental evolutionary force, but it is difficult to quantify because the effect of a recombination event on patterns of variation in a sample of genetic data can be hard to discern. Estimators for the recombination rate, which are usually based on the idea of integrating over the unobserved possible evolutionary histories of a sample, can therefore be noisy. Here we consider a related question: how would an estimator behave if the evolutionary history actually was observed? This would offer an upper bound on the performance of estimators used in practice. In this paper we derive an expression for the maximum likelihood estimator for the recombination rate based on a continuously observed, multi-locus, Wright--Fisher diffusion of haplotype frequencies, complementing existing work for an estimator of selection. We show that, contrary to selection, the estimator has unusual properties because the observed information matrix can explode in finite time whereupon the recombination parameter is learned without error. We also show that the recombination estimator is robust to the presence of selection in the sense that incorporating selection into the model leaves the estimator unchanged. We study the properties of the estimator by simulation and show that its distribution can be quite sensitive to the underlying mutation rates.
翻译:重新组合是一种基本的进化力量, 但很难量化, 因为重组事件对基因数据样本中变化模式的变化模式的影响很难辨别。 因此, 重新组合率的预测器通常基于对未观测到的样本可能的进化史进行整合的理念, 因此可能会很吵。 我们在这里考虑一个相关的问题: 如果实际观察到进化历史, 估计者会如何行事? 这将给实践中使用的估计者性能带来一个上限。 在本文中, 我们根据持续观察、 多路盘、 Wright- Fisher 传播机型频率来显示重组率的最大可能性估计器的表达器, 以补充当前对选择的估算器的工作。 我们表明, 与选择相反, 估计器有不寻常的特性, 因为观测到的信息矩阵可以在有限的时间内爆炸, 在那里可以毫无错误地学习再组合参数。 我们还显示, 重新组合估计器的精确度与选择方法的精确度相符, 其选择率可以通过感官的感应感应, 将其选择率纳入模型, 显示模型的精确度, 将显示, 选择结果将显示为模型的精度。