Reconfigurable intelligent surface has recently emerged as a promising technology for shaping the wireless environment by leveraging massive low-cost reconfigurable elements. Prior works mainly focus on a single-layer metasurface that lacks the capability of suppressing multiuser interference. By contrast, we propose a stacked intelligent metasurface (SIM)-enabled transceiver design for multiuser multiple-input single-output downlink communications. Specifically, the SIM is endowed with a multilayer structure and is deployed at the base station to perform transmit beamforming directly in the electromagnetic wave domain. As a result, an SIM-enabled transceiver overcomes the need for digital beamforming and operates with low-resolution digital-to-analog converters and a moderate number of radio-frequency chains, which significantly reduces the hardware cost and energy consumption, while substantially decreasing the precoding delay benefiting from the processing performed in the wave domain. To leverage the benefits of SIM-enabled transceivers, we formulate an optimization problem for maximizing the sum rate of all the users by jointly designing the transmit power allocated to them and the analog beamforming in the wave domain. Numerical results based on a customized alternating optimization algorithm corroborate the effectiveness of the proposed SIM-enabled analog beamforming design as compared with various benchmark schemes. Most notably, the proposed analog beamforming scheme is capable of substantially decreasing the precoding delay compared to its digital counterpart.


翻译:重新配置的智能表面最近成为通过利用大规模低成本可重新配置的元素来形成无线环境的有希望的技术。先前的工程主要侧重于单层的元表面,缺乏抑制多用户干扰的能力。相反,我们提议为多用户多用户多投入单输出下链接通信设计堆叠智能的元表面(SIM),同时大幅降低从波域处理中受益的预译延迟。具体地说,SIM拥有一个多层结构,部署在基地站,直接在电磁波域进行传输波成形。因此,一个SIM驱动的传输器克服了数字信号成形的需要,并以低分辨率数字到分析器转换器和中等数量的无线电频率链进行操作,大大降低了硬件成本和能源消耗量。为了利用SIM驱动的收发器的好处,我们提出了一个优化问题,通过联合设计分配给所有用户的传输能力来最大限度地提高所有用户的对称率。 与拟议升级的模拟模拟模型相比,正在逐步升级的升级的模型化模型,将逐步升级的模型化成一个基础。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年3月31日
Arxiv
31+阅读 · 2022年2月15日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员